File: itkBayesianClassifierImageFilterTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (313 lines) | stat: -rw-r--r-- 12,004 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkBayesianClassifierImageFilter.h"
#include "itkBayesianClassifierInitializationImageFilter.h"
#include "itkImageFileWriter.h"
#include "itkImageToImageFilter.h"
#include "itkGradientAnisotropicDiffusionImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"

#include "itkPipelineMonitorImageFilter.h"
#include "itkTestingMacros.h"


template< typename TInputImage, typename TBayesianClassifierInitializer, typename TBayesianClassifierFilter >
int TestBayesianClassifierImageFilterWithNoPriors( typename TInputImage::Pointer image,
  unsigned int numberOfClasses, unsigned int numberOfSmoothingIterations, char* outputFilename )
{
  typedef TBayesianClassifierInitializer BayesianClassifierInitializerType;
  typedef TBayesianClassifierFilter      BayesianClassifierFilterType;

  typename BayesianClassifierInitializerType::Pointer bayesianInitializer =
    BayesianClassifierInitializerType::New();

  bayesianInitializer->SetInput( image );
  bayesianInitializer->SetNumberOfClasses( numberOfClasses );

  typename BayesianClassifierFilterType::Pointer bayesianClassifier = BayesianClassifierFilterType::New();

  bayesianClassifier->SetInput( bayesianInitializer->GetOutput() );

  bayesianClassifier->SetNumberOfSmoothingIterations( numberOfSmoothingIterations );
  TEST_SET_GET_VALUE( numberOfSmoothingIterations, bayesianClassifier->GetNumberOfSmoothingIterations() );

  typedef typename BayesianClassifierFilterType::ExtractedComponentImageType ExtractedComponentImageType;
  typedef itk::GradientAnisotropicDiffusionImageFilter<
    ExtractedComponentImageType, ExtractedComponentImageType >  SmoothingFilterType;
  typename SmoothingFilterType::Pointer smoother = SmoothingFilterType::New();
  smoother->SetNumberOfIterations( 1 );
  smoother->SetTimeStep( 0.125 );
  smoother->SetConductanceParameter( 3 );

  bayesianClassifier->SetSmoothingFilter( smoother );
  TEST_SET_GET_VALUE( smoother, bayesianClassifier->GetSmoothingFilter().GetPointer() );


  typedef itk::PipelineMonitorImageFilter< TInputImage > MonitorFilterType;
  typename MonitorFilterType::Pointer monitor = MonitorFilterType::New();
  monitor->SetInput( bayesianClassifier->GetOutput() );


  typedef typename BayesianClassifierFilterType::OutputImageType ClassifierOutputImageType;
  typedef itk::Image< unsigned char, TInputImage::ImageDimension > OutputImageType;
  typedef itk::RescaleIntensityImageFilter<
    ClassifierOutputImageType, OutputImageType > RescalerType;
  typename RescalerType::Pointer rescaler = RescalerType::New();
  rescaler->SetInput( monitor->GetOutput() );
  rescaler->SetOutputMinimum( 0 );
  rescaler->SetOutputMaximum( 255 );

  typedef itk::ImageFileWriter< OutputImageType > WriterType;

  typename WriterType::Pointer writer = WriterType::New();
  writer->SetFileName( outputFilename );

  writer->SetInput( rescaler->GetOutput() );

  TRY_EXPECT_NO_EXCEPTION( writer->Update() );

  if (!monitor->VerifyAllInputCanNotStream())
    {
    std::cout << "Pipeline did not execute as expected!" << std::endl;
    return EXIT_FAILURE;
    }

  return EXIT_SUCCESS;
}


template< typename TInputImage, typename TBayesianClassifierInitializer, typename TBayesianClassifierFilter >
int TestBayesianClassifierImageFilterWithPriors( typename TInputImage::Pointer image,
  typename TBayesianClassifierFilter::PriorsImageType::Pointer priorsImage,
  unsigned int numberOfClasses, unsigned int numberOfSmoothingIterations, char* outputFilename )
{
  typedef TBayesianClassifierInitializer BayesianClassifierInitializerType;
  typedef TBayesianClassifierFilter      BayesianClassifierFilterType;

  typename BayesianClassifierInitializerType::Pointer bayesianInitializer =
    BayesianClassifierInitializerType::New();

  bayesianInitializer->SetInput( image );

  bayesianInitializer->SetNumberOfClasses( numberOfClasses );

  typename BayesianClassifierFilterType::Pointer bayesianClassifier = BayesianClassifierFilterType::New();

  bayesianClassifier->SetInput( bayesianInitializer->GetOutput() );
  bayesianClassifier->SetPriors( priorsImage );

  bayesianClassifier->SetNumberOfSmoothingIterations( numberOfSmoothingIterations );
  TEST_SET_GET_VALUE( numberOfSmoothingIterations, bayesianClassifier->GetNumberOfSmoothingIterations() );

  typedef typename BayesianClassifierFilterType::ExtractedComponentImageType ExtractedComponentImageType;
  typedef itk::GradientAnisotropicDiffusionImageFilter<
    ExtractedComponentImageType, ExtractedComponentImageType >  SmoothingFilterType;
  typename SmoothingFilterType::Pointer smoother = SmoothingFilterType::New();
  smoother->SetNumberOfIterations( 1 );
  smoother->SetTimeStep( 0.125 );
  smoother->SetConductanceParameter( 3 );

  bayesianClassifier->SetSmoothingFilter( smoother );
  TEST_SET_GET_VALUE( smoother, bayesianClassifier->GetSmoothingFilter().GetPointer() );


  typedef itk::PipelineMonitorImageFilter< TInputImage > MonitorFilterType;
  typename MonitorFilterType::Pointer monitor = MonitorFilterType::New();
  monitor->SetInput( bayesianClassifier->GetOutput() );


  typedef typename BayesianClassifierFilterType::OutputImageType ClassifierOutputImageType;
  typedef itk::Image< unsigned char,  TInputImage::ImageDimension > OutputImageType;
  typedef itk::RescaleIntensityImageFilter<
    ClassifierOutputImageType, OutputImageType > RescalerType;
  typename RescalerType::Pointer rescaler = RescalerType::New();
  rescaler->SetInput( monitor->GetOutput() );
  rescaler->SetOutputMinimum( 0 );
  rescaler->SetOutputMaximum( 255 );

  typedef itk::ImageFileWriter< OutputImageType > WriterType;

  typename WriterType::Pointer writer = WriterType::New();
  writer->SetFileName( outputFilename );

  writer->SetInput( rescaler->GetOutput() );

  TRY_EXPECT_NO_EXCEPTION( writer->Update() );

  if (!monitor->VerifyAllInputCanNotStream())
    {
    std::cout << "Pipeline did not execute as expected!" << std::endl;
    return EXIT_FAILURE;
    }

  return EXIT_SUCCESS;
}


int itkBayesianClassifierImageFilterTest( int argc, char* argv[] )
{

  if( argc < 6 )
    {
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0] << " inputImageFile outputImageFile numberOfClasses smoothingIterations testPriors" << std::endl;
    return EXIT_FAILURE;
    }

  // Set up reader
  const unsigned int Dimension = 2;
  typedef unsigned char                           InputPixelType;
  typedef itk::Image< InputPixelType, Dimension > InputImageType;
  typedef itk::ImageFileReader< InputImageType >  ReaderType;


  typedef itk::BayesianClassifierInitializationImageFilter< InputImageType >
    BayesianInitializerType;

  BayesianInitializerType::Pointer bayesianInitializer = BayesianInitializerType::New();

  EXERCISE_BASIC_OBJECT_METHODS( bayesianInitializer,
    BayesianClassifierInitializationImageFilter, ImageToImageFilter );


  ReaderType::Pointer reader = ReaderType::New();
  reader->SetFileName( argv[1] );

  TRY_EXPECT_NO_EXCEPTION( reader->Update() );

  ReaderType::OutputImageType::Pointer inputImage = reader->GetOutput();

  char* outputFilename = argv[2];
  unsigned int numberOfClasses = atoi( argv[3] );
  unsigned int numberOfSmoothingIterations = atoi( argv[4] );
  bool testPriors = atoi( argv[5] );


  typedef unsigned char  LabelType;
  typedef float          PriorType;
  typedef float          PosteriorType;

  typedef BayesianInitializerType::OutputImageType InitialLabelImageType;

  typedef itk::BayesianClassifierImageFilter<
    InitialLabelImageType, LabelType, PosteriorType, PriorType > BayesianClassifierFilterType;

  BayesianClassifierFilterType::Pointer bayesianClassifier = BayesianClassifierFilterType::New();

  EXERCISE_BASIC_OBJECT_METHODS( bayesianClassifier,
    BayesianClassifierImageFilter, ImageToImageFilter );

  bool testStatus = EXIT_SUCCESS;


  if( !testPriors )
    {
    std::cout << "Running the filter with no Priors set..." << std::endl;

    testStatus = TestBayesianClassifierImageFilterWithNoPriors<
      ReaderType::OutputImageType, BayesianInitializerType, BayesianClassifierFilterType >( inputImage,
      numberOfClasses, numberOfSmoothingIterations, outputFilename );
    }
  else
    {
    std::cout << "Running the filter with Priors set..." << std::endl;

    typedef BayesianClassifierFilterType::PriorsImageType PriorsImageType;

    const InputImageType * priorsInputImage = reader->GetOutput();

    PriorsImageType::Pointer priorsImage = PriorsImageType::New();
    priorsImage->CopyInformation( priorsInputImage );
    priorsImage->SetRegions( inputImage->GetLargestPossibleRegion() );
    priorsImage->SetNumberOfComponentsPerPixel(5);
    priorsImage->Allocate(true);

    testStatus =
      TestBayesianClassifierImageFilterWithPriors<
      ReaderType::OutputImageType, BayesianInitializerType, BayesianClassifierFilterType >(
      inputImage, priorsImage, numberOfClasses, numberOfSmoothingIterations, outputFilename );
    }

  // TEST valid image type combinations.
  // The hypothesis is that the vector element type for
  // TestInitialLabelImageType must be the same as for TestPriorType
  {
  const unsigned int     TestDimension = 2;
  typedef unsigned char  TestLabelType;
  typedef float          TestPosteriorType;

  typedef float                                            TestPriorType;
  typedef itk::VectorImage< TestPriorType, TestDimension > TestInitialLabelImageType;

  typedef itk::BayesianClassifierImageFilter<
    TestInitialLabelImageType, TestLabelType, TestPosteriorType, TestPriorType > ClassifierFilterType;
  ClassifierFilterType::Pointer filter = ClassifierFilterType::New();

  if( filter.IsNull() )
    {
    return EXIT_FAILURE;
    }

  EXERCISE_BASIC_OBJECT_METHODS( filter, BayesianClassifierImageFilter, ImageToImageFilter );
  }

  {
  const unsigned int     TestDimension = 2;
  typedef unsigned char  TestLabelType;
  typedef float          TestPosteriorType;

  typedef float          TestPriorType;
  typedef itk::VectorImage< double, TestDimension > TestInitialLabelImageType; // The element type MUST be the PriorType

  typedef itk::BayesianClassifierImageFilter<
    TestInitialLabelImageType, TestLabelType, TestPosteriorType, TestPriorType > ClassifierFilterType;
  ClassifierFilterType::Pointer filter = ClassifierFilterType::New();
  if( filter.IsNull() )
    {
    return EXIT_FAILURE;
    }

  EXERCISE_BASIC_OBJECT_METHODS( filter, BayesianClassifierImageFilter, ImageToImageFilter );
  }

  {
  const unsigned int TestDimension = 2;
  typedef unsigned char  TestLabelType;
  typedef float          TestPosteriorType;

  typedef double          TestPriorType;
  typedef itk::VectorImage< TestPriorType, TestDimension > TestInitialLabelImageType; // The element type MUST be the PriorType

  typedef itk::BayesianClassifierImageFilter<
    TestInitialLabelImageType, TestLabelType, TestPosteriorType, TestPriorType > ClassifierFilterType;
  ClassifierFilterType::Pointer filter = ClassifierFilterType::New();
  if( filter.IsNull() )
    {
    return EXIT_FAILURE;
    }

  EXERCISE_BASIC_OBJECT_METHODS( filter, BayesianClassifierImageFilter, ImageToImageFilter );
  }

  std::cout << "Test passed." << std::endl;

  return testStatus;
}