1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkImageClassifierFilter.h"
#include "itkGaussianMixtureModelComponent.h"
#include "itkExpectationMaximizationMixtureModelEstimator.h"
#include "itkMaximumDecisionRule.h"
#include "itkImageToListSampleAdaptor.h"
#include "itkNormalVariateGenerator.h"
#include "itkImageFileWriter.h"
//This program tests the ImageClassifierFilter. The test uses the
//ExpectationMaximizationMixtureModelEstimator to estimaete membership
//function parameters.
int itkImageClassifierFilterTest(int argc, char* argv[] )
{
if( argc < 2 )
{
std::cerr << "Missing command line arguments: "
<< argv[0] << "\t" << "ClassifiedOutputImage name" << std::endl;
return EXIT_FAILURE;
}
const unsigned int MeasurementVectorSize = 1;
typedef double MeasurementComponentType;
const unsigned int numberOfClasses = 2;
typedef itk::FixedArray< MeasurementComponentType, MeasurementVectorSize > InputPixelType;
const unsigned int ImageDimension = 2;
typedef itk::Image< InputPixelType, ImageDimension > InputImageType;
typedef unsigned char OutputPixelType;
typedef itk::Image< OutputPixelType, ImageDimension > OutputImageType;
//Generate an image with pixel intensities generated from two normal
//distributions
typedef itk::Statistics::NormalVariateGenerator NormalGeneratorType;
NormalGeneratorType::Pointer normalGenerator = NormalGeneratorType::New();
normalGenerator->Initialize( 101 );
InputImageType::Pointer image = InputImageType::New();
InputImageType::IndexType start;
InputImageType::SizeType size;
start.Fill( 0 );
size.Fill( 512 );
InputImageType::RegionType region( start, size );
image->SetRegions( region );
image->Allocate();
//Fill the first half of the input image with pixel intensities
//gnerated from a normal distribution defined by the following parameters
double mean = 10.5;
double standardDeviation = 5.0;
InputImageType::IndexType index;
unsigned int halfSize = size[1]/2;
for(unsigned int y = 0; y < halfSize; y++ )
{
index[1] = y;
for(unsigned int x = 0; x < size[0]; x++ )
{
index[0] = x;
InputPixelType value;
value[0] = (normalGenerator->GetVariate() * standardDeviation ) + mean;
//std::cout << "Index = \t" << index << "\t" << value << std::endl;
image->SetPixel(index, value);
}
}
//Pixel intensities generated from the second normal distribution
double mean2 = 200.5;
double standardDeviation2 = 20.0;
for(unsigned int y = halfSize; y < size[1]; y++ )
{
index[1] = y;
for(unsigned int x = 0; x < size[0]; x++ )
{
index[0] = x;
InputPixelType value;
value[0] = (normalGenerator->GetVariate() * standardDeviation2 ) + mean2;
//std::cout << "Index = \t" << index << "\t" << value << std::endl;
image->SetPixel(index, value);
}
}
//Instantiate an image to list sample adaptor to pass the sample list
//to EM estimator
typedef itk::Statistics::ImageToListSampleAdaptor< InputImageType >
ImageToListSampleAdaptorType;
ImageToListSampleAdaptorType::Pointer sample = ImageToListSampleAdaptorType::New();
sample->SetImage( image );
//Use EM estimator to estimate gaussian membership functions
typedef itk::Statistics::ExpectationMaximizationMixtureModelEstimator< ImageToListSampleAdaptorType >
EstimatorType;
typedef itk::Statistics::GaussianMixtureModelComponent< ImageToListSampleAdaptorType >
ComponentType;
/* Preparing the gaussian mixture components */
typedef itk::Array < double > ParametersType;
std::vector< ParametersType > initialParameters(numberOfClasses);
ParametersType params(2);
params[0] = 8.0;
params[1] = 0.1;
initialParameters[0] = params;
params[0] = 170.0;
params[1] = 2.0;
initialParameters[1] = params;
typedef ComponentType::Pointer ComponentPointer;
std::vector< ComponentPointer > components;
for (unsigned int i = 0; i < numberOfClasses; i++ )
{
components.push_back(ComponentType::New());
(components[i])->SetSample(sample.GetPointer());
(components[i])->SetParameters(initialParameters[i]);
}
/* Estimating */
EstimatorType::Pointer estimator = EstimatorType::New();
estimator->SetSample(sample.GetPointer());
int maximumIteration = 200;
estimator->SetMaximumIteration(maximumIteration);
itk::Array< double > initialProportions(numberOfClasses);
initialProportions[0] = 0.5;
initialProportions[1] = 0.5;
estimator->SetInitialProportions(initialProportions);
for (unsigned int i = 0; i < numberOfClasses; i++)
{
estimator->AddComponent((ComponentType::Superclass*)
(components[i]).GetPointer());
}
estimator->Update();
for (unsigned int i = 0; i < numberOfClasses; i++)
{
std::cout << "Cluster[" << i << "]" << std::endl;
std::cout << " Parameters:" << std::endl;
std::cout << " " << (components[i])->GetFullParameters() << std::endl;
std::cout << " Proportion: ";
std::cout << " " << (estimator->GetProportions())[i] << std::endl;
}
typedef itk::Statistics::ImageClassifierFilter< ImageToListSampleAdaptorType,
InputImageType,OutputImageType > ImageClassifierFilterType;
ImageClassifierFilterType::Pointer filter
= ImageClassifierFilterType::New();
typedef ImageClassifierFilterType::ClassLabelVectorObjectType ClassLabelVectorObjectType;
typedef ImageClassifierFilterType::ClassLabelVectorType ClassLabelVectorType;
ClassLabelVectorObjectType::Pointer classLabelsObject = ClassLabelVectorObjectType::New();
// Add class labels
ClassLabelVectorType & classLabelVector = classLabelsObject->Get();
typedef ImageClassifierFilterType::ClassLabelType ClassLabelType;
ClassLabelType class1 = 0;
classLabelVector.push_back( class1 );
ClassLabelType class2 = 255;
classLabelVector.push_back( class2 );
//Set a decision rule type
typedef itk::Statistics::MaximumDecisionRule DecisionRuleType;
DecisionRuleType::Pointer decisionRule = DecisionRuleType::New();
const ImageClassifierFilterType::MembershipFunctionVectorObjectType *
membershipFunctionsObject = estimator->GetOutput();
/* Print out estimated parameters of the membership function */
const ImageClassifierFilterType::MembershipFunctionVectorType
membershipFunctions = membershipFunctionsObject->Get();
ImageClassifierFilterType::MembershipFunctionVectorType::const_iterator
begin = membershipFunctions.begin();
ImageClassifierFilterType::MembershipFunctionVectorType::const_iterator
end = membershipFunctions.end();
ImageClassifierFilterType::MembershipFunctionVectorType::const_iterator functionIter;
functionIter=begin;
unsigned int counter=1;
std::cout << "Estimator membership function output " << std::endl;
while( functionIter != end )
{
ImageClassifierFilterType::MembershipFunctionPointer membershipFunction = *functionIter;
const EstimatorType::GaussianMembershipFunctionType *
gaussianMemberShpFunction =
dynamic_cast<const EstimatorType::GaussianMembershipFunctionType*>(membershipFunction.GetPointer());
std::cout << "\tMembership function:\t " << counter << std::endl;
std::cout << "\t\tMean="<< gaussianMemberShpFunction->GetMean() << std::endl;
std::cout << "\t\tCovariance matrix=" << gaussianMemberShpFunction->GetCovariance() << std::endl;
functionIter++;
counter++;
}
//Set membership functions weight array
const ImageClassifierFilterType::MembershipFunctionsWeightsArrayObjectType *
weightArrayObjects = estimator->GetMembershipFunctionsWeightsArray();
const ImageClassifierFilterType::MembershipFunctionsWeightsArrayType weightsArray = weightArrayObjects->Get();
std::cout << "Estimator membership function Weight/proporation output: " << std::endl;
for(unsigned int i=0; i < weightsArray.Size(); i++ )
{
std::cout << "Membership function: \t" << i << "\t" << weightsArray[i] << std::endl;
}
filter->SetImage( image );
filter->SetNumberOfClasses( numberOfClasses );
if( filter->GetNumberOfClasses() != numberOfClasses )
{
std::cerr << "Get/SetNumberOfClasses error" << std::endl;
return EXIT_FAILURE;
}
filter->SetClassLabels( classLabelsObject );
filter->SetMembershipFunctions( membershipFunctionsObject );
filter->SetMembershipFunctionsWeightsArray( weightArrayObjects );
//Run the filter without setting a decision rule. An exception should be
//thrown
try
{
filter->Update();
std::cerr << "Attempting to run a classification without setting"
<< "decision rule, should throw an exception" << std::endl;
return EXIT_FAILURE;
}
catch( itk::ExceptionObject & excp )
{
std::cerr << excp << std::endl;
}
filter->SetDecisionRule( decisionRule );
//Test Set/GetDecisionRule method
if( filter->GetDecisionRule() != decisionRule )
{
std::cerr << "Set/GetDecisionRule method error \n" << std::endl;
return EXIT_FAILURE;
}
try
{
filter->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
//Write out the classified image
typedef itk::ImageFileWriter< OutputImageType > OutputImageWriterType;
OutputImageWriterType::Pointer outputImageWriter = OutputImageWriterType::New();
outputImageWriter->SetFileName( argv[1] );
outputImageWriter->SetInput( filter->GetOutput() );
outputImageWriter->Update();
//Check if the measurement vectors are correctly labelled.
//TODO
std::cerr << "[PASSED]" << std::endl;
return EXIT_SUCCESS;
}
|