File: itkKmeansModelEstimatorTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (288 lines) | stat: -rw-r--r-- 10,487 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

// Insight classes

#include "itkImageKmeansModelEstimator.h"
#include "itkDistanceToCentroidMembershipFunction.h"

//Data definitions
#define   IMGWIDTH            16
#define   IMGHEIGHT           1
#define   NFRAMES             1
#define   NUMBANDS            2
#define   NDIMENSION          3

#define   CDBKWIDTH           4
#define   CDBKHEIGHT          1
#define   NFRAMES             1
#define   NCODEWORDS          CDBKWIDTH * CDBKHEIGHT * NFRAMES
#define   NUMBANDS            2
#define   NDIMENSION          3
#define   STARTFRAME          0
#define   NUM_BYTES_PER_PIXEL 1
#define   ONEBAND             1


// class to support progress feeback
class ShowProgressObject
{
public:
  ShowProgressObject(itk::LightProcessObject * o)
    {m_Process = o;}
  void ShowProgress()
    {std::cout << "Progress " << m_Process->GetProgress() << std::endl;}
  itk::LightProcessObject::Pointer m_Process;
};

int itkKmeansModelEstimatorTest(int, char* [] )
{
  //------------------------------------------------------
  //Create a simple test vector with 16 entries and 2 bands
  //------------------------------------------------------
  typedef itk::Image<itk::Vector<double,NUMBANDS>,NDIMENSION> VecImageType;

  typedef VecImageType::PixelType VecImagePixelType;

  VecImageType::Pointer vecImage = VecImageType::New();

  VecImageType::SizeType vecImgSize = {{ IMGWIDTH , IMGHEIGHT, NFRAMES }};

  VecImageType::IndexType index;
  index.Fill(0);
  VecImageType::RegionType region;

  region.SetSize( vecImgSize );
  region.SetIndex( index );

  vecImage->SetLargestPossibleRegion( region );
  vecImage->SetBufferedRegion( region );
  vecImage->Allocate();

  // setup the iterators
  enum { VecImageDimension = VecImageType::ImageDimension };
  typedef
    itk::ImageRegionIterator< VecImageType > VecIterator;

  VecIterator outIt( vecImage, vecImage->GetBufferedRegion() );

  //--------------------------------------------------------------------------
  //Manually create and store each vector
  //--------------------------------------------------------------------------

  //Vector no. 1
  VecImagePixelType vec;
  vec[0] = 21; vec[1] = 9; outIt.Set( vec ); ++outIt;
  //Vector no. 2
  vec[0] = 10; vec[1] = 20; outIt.Set( vec ); ++outIt;
  //Vector no. 3
  vec[0] = 8; vec[1] = 21; outIt.Set( vec ); ++outIt;
  //Vector no. 4
  vec[0] = 10; vec[1] = 23; outIt.Set( vec ); ++outIt;
  //Vector no. 5
  vec[0] = 12; vec[1] = 21; outIt.Set( vec ); ++outIt;
  //Vector no. 6
  vec[0] = 11; vec[1] = 12; outIt.Set( vec ); ++outIt;
  //Vector no. 7
  vec[0] = 15; vec[1] = 22; outIt.Set( vec ); ++outIt;
  //Vector no. 8
  vec[0] = 9; vec[1] = 10; outIt.Set( vec ); ++outIt;
  //Vector no. 9
  vec[0] = 19; vec[1] = 10; outIt.Set( vec ); ++outIt;
  //Vector no. 10
  vec[0] = 19; vec[1] = 10; outIt.Set( vec ); ++outIt;
  //Vector no. 11
  vec[0] = 21; vec[1] = 21; outIt.Set( vec ); ++outIt;
  //Vector no. 12
  vec[0] = 11; vec[1] = 20; outIt.Set( vec ); ++outIt;
  //Vector no. 13
  vec[0] = 8; vec[1] = 18; outIt.Set( vec ); ++outIt;
  //Vector no. 14
  vec[0] = 18; vec[1] = 10; outIt.Set( vec ); ++outIt;
  //Vector no. 15
  vec[0] = 22; vec[1] = 10; outIt.Set( vec ); ++outIt;
  //Vector no. 16
  vec[0] = 24; vec[1] = 23; outIt.Set( vec ); ++outIt;

  outIt.GoToBegin();

  //---------------------------------------------------------------
  //Input the codebook
  //---------------------------------------------------------------
  //------------------------------------------------------------------
  //Read the codebook into an vnl_matrix
  //------------------------------------------------------------------

  vnl_matrix<double> inCDBK(NCODEWORDS, NUMBANDS);
  //There are 4 entries to the code book
  int r,c;
  r=0; c=0; inCDBK.put(r,c,10);
  r=0; c=1; inCDBK.put(r,c,10);
  r=1; c=0; inCDBK.put(r,c,10);
  r=1; c=1; inCDBK.put(r,c,20);
  r=2; c=0; inCDBK.put(r,c,20);
  r=2; c=1; inCDBK.put(r,c,10);
  r=3; c=0; inCDBK.put(r,c,20);
  r=3; c=1; inCDBK.put(r,c,20);

  //----------------------------------------------------------------------
  // Test code for the Kmeans model estimator
  //----------------------------------------------------------------------

  //---------------------------------------------------------------------
  // Multiband data is now available in the right format
  //---------------------------------------------------------------------

  //----------------------------------------------------------------------
  //Set membership function (Using the statistics objects)
  //----------------------------------------------------------------------
  namespace stat = itk::Statistics;

  typedef stat::DistanceToCentroidMembershipFunction< VecImagePixelType >
                                          MembershipFunctionType;
  typedef MembershipFunctionType::Pointer MembershipFunctionPointer;

  typedef std::vector< MembershipFunctionPointer >
    MembershipFunctionPointerVector;


  //----------------------------------------------------------------------
  //Set the image model estimator
  //----------------------------------------------------------------------
  typedef itk::ImageKmeansModelEstimator<VecImageType, MembershipFunctionType>
    ImageKmeansModelEstimatorType;

  ImageKmeansModelEstimatorType::Pointer
    applyKmeansEstimator = ImageKmeansModelEstimatorType::New();

  //----------------------------------------------------------------------
  //Set the parameters of the clusterer
  //----------------------------------------------------------------------
  applyKmeansEstimator->SetInputImage(vecImage);
  applyKmeansEstimator->SetNumberOfModels(NCODEWORDS);
  applyKmeansEstimator->SetThreshold(0.01 );
  applyKmeansEstimator->SetOffsetAdd( 0.01 );
  applyKmeansEstimator->SetOffsetMultiply( 0.01 );
  applyKmeansEstimator->SetMaxSplitAttempts( 10 );
  applyKmeansEstimator->Update();
  applyKmeansEstimator->Print(std::cout);

  MembershipFunctionPointerVector membershipFunctions =
    applyKmeansEstimator->GetMembershipFunctions();

  vnl_vector<double> kmeansResultForClass;
  vnl_vector<double> referenceCodebookForClass;
  vnl_vector<double> errorForClass;
  double error =0;
  double meanCDBKvalue = 0;

  for(unsigned int classIndex=0; classIndex < membershipFunctions.size();
    classIndex++ )
    {
    kmeansResultForClass = membershipFunctions[classIndex]->GetCentroid();
    referenceCodebookForClass = inCDBK.get_row( classIndex);
    errorForClass = kmeansResultForClass - referenceCodebookForClass;

    for(int i = 0; i < NUMBANDS; i++)
      {
      error += itk::Math::abs(errorForClass[i]/referenceCodebookForClass[i]);
      meanCDBKvalue += referenceCodebookForClass[i];
      }

    }
  error /= NCODEWORDS*NUMBANDS;
  meanCDBKvalue /= NCODEWORDS*NUMBANDS;

  if( error < 0.1 * meanCDBKvalue)
    std::cout << "Kmeans algorithm passed (without initial input)"<<std::endl;
  else
    std::cout << "Kmeans algorithm failed (without initial input)"<<std::endl;

  //Validation with no codebook/initial Kmeans estimate
  vnl_matrix<double> kmeansResult = applyKmeansEstimator->GetKmeansResults();
  std::cout << "KMeansResults\n" << kmeansResult << std::endl;

  applyKmeansEstimator->SetCodebook(inCDBK);
  applyKmeansEstimator->Update();
  applyKmeansEstimator->Print(std::cout);

  membershipFunctions = applyKmeansEstimator->GetMembershipFunctions();

  //Testing for the various parameter access functions in the test
  std::cout << "The final codebook (cluster centers are: " << std::endl;
  std::cout << applyKmeansEstimator->GetCodebook() << std::endl;
  std::cout << "The threshold parameter used was: " <<
    applyKmeansEstimator->GetThreshold() << std::endl;
  std::cout << "The additive ofset parameter used was: " <<
    applyKmeansEstimator->GetOffsetAdd() << std::endl;
  std::cout << "The multiplicative ofset parameter used was: " <<
    applyKmeansEstimator->GetOffsetMultiply() << std::endl;
  std::cout << "The maximum number of attempted splits in codebook: " <<
    applyKmeansEstimator->GetMaxSplitAttempts() << std::endl;
  std::cout << "  " << std::endl;

  //Testing the distance of the first pixel to the centroids; identify the class
  //closest to the fist pixel.
  unsigned int minidx = 0;
  double mindist = 99999999;
  double classdist;
  for( unsigned int idx=0; idx < membershipFunctions.size(); idx++ )
    {
    classdist = membershipFunctions[idx]->Evaluate( outIt.Get() );
    std::cout << "Distance of first pixel to class " << idx << " is: " << classdist << std::endl;
    if( mindist > classdist  )
      {
      mindist = classdist;
      minidx = idx;
      }
    }

  //Validation with initial Kmeans estimate provided as input by the user
  error =0;
  meanCDBKvalue = 0;
  const size_t test = membershipFunctions.size();
  for(unsigned int classIndex=0; classIndex < test; classIndex++ )
    {
    kmeansResultForClass = membershipFunctions[classIndex]->GetCentroid();
    referenceCodebookForClass = inCDBK.get_row( classIndex);
    errorForClass = kmeansResultForClass - referenceCodebookForClass;

    for(int i = 0; i < NUMBANDS; i++)
      {
      error += itk::Math::abs(errorForClass[i]/referenceCodebookForClass[i]);
      meanCDBKvalue += referenceCodebookForClass[i];
      }
    }

  error /= NCODEWORDS*NUMBANDS;
  meanCDBKvalue /= NCODEWORDS*NUMBANDS;

  //Check if the mean codebook is within error limits and the first pixel
  //is labeled to belong to class 2
  if( (error < 0.1 * meanCDBKvalue) && (minidx == 2) )
    {
    std::cout << "Kmeans algorithm passed (with initial input)"<<std::endl;
    }
  else
    {
    std::cout << "Kmeans algorithm failed (with initial input)"<<std::endl;
    return EXIT_FAILURE;
    }

  return EXIT_SUCCESS;
}