1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkListSample.h"
#include "itkSampleClassifierFilter.h"
#include "itkMaximumDecisionRule.h"
#include "itkDistanceToCentroidMembershipFunction.h"
// ADD DistanceToCentroidMembershipFunction (with the added SetDistanceMetric() method
// ADD EuclideanDistanceMetri
// Create two classes with their respective DistanceToCentroidMembershipFunction and two separate centroids
// ADD MinimumDecisionRule
// Run that classification.
int itkSampleClassifierFilterTest1( int, char * [] )
{
const unsigned int numberOfComponents = 3;
typedef float MeasurementType;
const unsigned int numberOfClasses = 3;
typedef itk::Array< MeasurementType > MeasurementVectorType;
typedef itk::Statistics::ListSample< MeasurementVectorType > SampleType;
typedef itk::Statistics::SampleClassifierFilter< SampleType > FilterType;
FilterType::Pointer filter = FilterType::New();
SampleType::Pointer sample = SampleType::New();
sample->SetMeasurementVectorSize( numberOfComponents );
// Test GetInput() before setting the input
if( filter->GetInput() != ITK_NULLPTR )
{
std::cerr << "GetInput() should have returned ITK_NULLPTR" << std::endl;
return EXIT_FAILURE;
}
// Test GetOutput() before creating the output
if( filter->GetOutput() == ITK_NULLPTR )
{
std::cerr << "GetOutput() should have returned NON-ITK_NULLPTR" << std::endl;
return EXIT_FAILURE;
}
//Add measurement vectors
MeasurementVectorType v1(numberOfComponents);
v1[0] = 0;
v1[1] = 0;
v1[2] = 0;
sample->PushBack( v1 );
MeasurementVectorType v2(numberOfComponents);
v2[0] = 1;
v2[1] = 1;
v2[2] = 1;
sample->PushBack( v2 );
MeasurementVectorType v3(numberOfComponents);
v3[0] = 2;
v3[1] = 2;
v3[2] = 2;
sample->PushBack( v3 );
filter->SetInput( sample );
if( filter->GetInput() != sample.GetPointer() )
{
std::cerr << "GetInput() didn't matched SetInput()" << std::endl;
return EXIT_FAILURE;
}
filter->SetNumberOfClasses( numberOfClasses );
if( filter->GetNumberOfClasses() != numberOfClasses )
{
std::cerr << "GetNumberOfClasses() didn't matched SetNumberOfClasses()" << std::endl;
return EXIT_FAILURE;
}
typedef FilterType::ClassLabelVectorObjectType ClassLabelVectorObjectType;
typedef FilterType::ClassLabelVectorType ClassLabelVectorType;
typedef FilterType::MembershipFunctionVectorObjectType MembershipFunctionVectorObjectType;
typedef FilterType::MembershipFunctionVectorType MembershipFunctionVectorType;
typedef itk::Statistics::DistanceToCentroidMembershipFunction< MeasurementVectorType >
MembershipFunctionType;
typedef MembershipFunctionType::Pointer MembershipFunctionPointer;
ClassLabelVectorObjectType::Pointer classLabelsObject = ClassLabelVectorObjectType::New();
filter->SetClassLabels( classLabelsObject );
MembershipFunctionVectorObjectType::Pointer membershipFunctionsObject =
MembershipFunctionVectorObjectType::New();
filter->SetMembershipFunctions( membershipFunctionsObject );
//Run the filter without specifying any membership functions. An exception
//should be thrown since there will be a mismatch between the number of classes
//and membership functions
try
{
filter->Update();
std::cerr << "Attempting to run a classification with unequal"
<< " number of membership functions and number of classes,"
<< " should throw an exception" << std::endl;
return EXIT_FAILURE;
}
catch( itk::ExceptionObject & excp )
{
std::cerr << excp << std::endl;
}
// Add three membership functions and rerun the filter
MembershipFunctionVectorType & membershipFunctionsVector = membershipFunctionsObject->Get();
MembershipFunctionPointer membershipFunction1 = MembershipFunctionType::New();
membershipFunction1->SetMeasurementVectorSize( numberOfComponents );
MembershipFunctionType::CentroidType centroid1;
itk::NumericTraits<MembershipFunctionType::CentroidType>::SetLength( centroid1,
numberOfComponents );
membershipFunction1->SetCentroid( centroid1 );
membershipFunctionsVector.push_back( membershipFunction1.GetPointer() );
MembershipFunctionPointer membershipFunction2 = MembershipFunctionType::New();
membershipFunction1->SetMeasurementVectorSize( numberOfComponents );
MembershipFunctionType::CentroidType centroid2;
itk::NumericTraits<MembershipFunctionType::CentroidType>::SetLength( centroid2,
numberOfComponents );
membershipFunction2->SetCentroid( centroid2 );
membershipFunctionsVector.push_back( membershipFunction2.GetPointer() );
MembershipFunctionPointer membershipFunction3 = MembershipFunctionType::New();
membershipFunction3->SetMeasurementVectorSize( numberOfComponents );
MembershipFunctionType::CentroidType centroid3;
itk::NumericTraits<MembershipFunctionType::CentroidType>::SetLength( centroid3,
numberOfComponents );
membershipFunction3->SetCentroid( centroid3 );
membershipFunctionsVector.push_back( membershipFunction3.GetPointer() );
try
{
filter->Update();
std::cerr << "Attempting to run a classification with unequal"
<< " number of class labels and number of classes,"
<< " should throw an exception" << std::endl;
return EXIT_FAILURE;
}
catch( itk::ExceptionObject & excp )
{
std::cerr << excp << std::endl;
}
// Add three class labels and rerun the filter
ClassLabelVectorType & classLabelVector = classLabelsObject->Get();
typedef FilterType::ClassLabelType ClassLabelType;
ClassLabelType class1 = 0;
classLabelVector.push_back( class1 );
ClassLabelType class2 = 1;
classLabelVector.push_back( class2 );
ClassLabelType class3 = 2;
classLabelVector.push_back( class3 );
//Run the filter without setting a decision rule. An exception should be
//thrown
try
{
filter->Update();
std::cerr << "Attempting to run a classification without setting"
<< "decision rule, should throw an exception" << std::endl;
return EXIT_FAILURE;
}
catch( itk::ExceptionObject & excp )
{
std::cerr << excp << std::endl;
}
//Set a decision rule type
typedef itk::Statistics::MaximumDecisionRule DecisionRuleType;
DecisionRuleType::Pointer decisionRule = DecisionRuleType::New();
filter->SetDecisionRule( decisionRule );
if( filter->GetDecisionRule() != decisionRule )
{
std::cerr << "Get/Set Decision rule error! " << std::endl;
return EXIT_FAILURE;
}
try
{
filter->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
// Test GetOutput() after creating the output
if( filter->GetOutput() == ITK_NULLPTR )
{
std::cerr << "GetOutput() should have returned NON-ITK_NULLPTR" << std::endl;
return EXIT_FAILURE;
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|