File: itkSampleClassifierFilterTest1.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (235 lines) | stat: -rw-r--r-- 7,916 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkListSample.h"
#include "itkSampleClassifierFilter.h"
#include "itkMaximumDecisionRule.h"
#include "itkDistanceToCentroidMembershipFunction.h"


// ADD DistanceToCentroidMembershipFunction (with the added SetDistanceMetric() method
// ADD EuclideanDistanceMetri
// Create two classes with their respective DistanceToCentroidMembershipFunction and two separate centroids
// ADD MinimumDecisionRule
// Run that classification.

int itkSampleClassifierFilterTest1( int, char * [] )
{

  const unsigned int numberOfComponents = 3;
  typedef float      MeasurementType;

  const unsigned int numberOfClasses = 3;

  typedef itk::Array< MeasurementType > MeasurementVectorType;
  typedef itk::Statistics::ListSample< MeasurementVectorType > SampleType;

  typedef itk::Statistics::SampleClassifierFilter< SampleType > FilterType;

  FilterType::Pointer filter = FilterType::New();

  SampleType::Pointer sample = SampleType::New();
  sample->SetMeasurementVectorSize( numberOfComponents );

  // Test GetInput() before setting the input
  if( filter->GetInput() != ITK_NULLPTR )
    {
    std::cerr << "GetInput() should have returned ITK_NULLPTR" << std::endl;
    return EXIT_FAILURE;
    }

  // Test GetOutput() before creating the output
  if( filter->GetOutput() == ITK_NULLPTR )
    {
    std::cerr << "GetOutput() should have returned NON-ITK_NULLPTR" << std::endl;
    return EXIT_FAILURE;
    }

  //Add measurement vectors
  MeasurementVectorType v1(numberOfComponents);
  v1[0] = 0;
  v1[1] = 0;
  v1[2] = 0;
  sample->PushBack( v1 );

  MeasurementVectorType v2(numberOfComponents);
  v2[0] = 1;
  v2[1] = 1;
  v2[2] = 1;
  sample->PushBack( v2 );

  MeasurementVectorType v3(numberOfComponents);
  v3[0] = 2;
  v3[1] = 2;
  v3[2] = 2;
  sample->PushBack( v3 );


  filter->SetInput( sample );

  if( filter->GetInput() != sample.GetPointer() )
    {
    std::cerr << "GetInput() didn't matched SetInput()" << std::endl;
    return EXIT_FAILURE;
    }

  filter->SetNumberOfClasses( numberOfClasses );

  if( filter->GetNumberOfClasses() != numberOfClasses )
    {
    std::cerr << "GetNumberOfClasses() didn't matched SetNumberOfClasses()" << std::endl;
    return EXIT_FAILURE;
    }

  typedef FilterType::ClassLabelVectorObjectType               ClassLabelVectorObjectType;
  typedef FilterType::ClassLabelVectorType                     ClassLabelVectorType;
  typedef FilterType::MembershipFunctionVectorObjectType       MembershipFunctionVectorObjectType;
  typedef FilterType::MembershipFunctionVectorType             MembershipFunctionVectorType;

  typedef itk::Statistics::DistanceToCentroidMembershipFunction< MeasurementVectorType >
                                                               MembershipFunctionType;

  typedef MembershipFunctionType::Pointer                      MembershipFunctionPointer;

  ClassLabelVectorObjectType::Pointer  classLabelsObject = ClassLabelVectorObjectType::New();
  filter->SetClassLabels( classLabelsObject );

  MembershipFunctionVectorObjectType::Pointer membershipFunctionsObject =
                                        MembershipFunctionVectorObjectType::New();
  filter->SetMembershipFunctions( membershipFunctionsObject );

  //Run the filter without specifying any membership functions. An exception
  //should be thrown since there will be a mismatch between the number of classes
  //and membership functions
  try
    {
    filter->Update();
    std::cerr << "Attempting to run a classification with unequal"
              << " number of membership functions and number of classes,"
              << " should throw an exception" << std::endl;
    return EXIT_FAILURE;
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << excp << std::endl;
    }


  // Add three membership functions and rerun the filter
  MembershipFunctionVectorType &  membershipFunctionsVector = membershipFunctionsObject->Get();

  MembershipFunctionPointer membershipFunction1 = MembershipFunctionType::New();
  membershipFunction1->SetMeasurementVectorSize( numberOfComponents );
  MembershipFunctionType::CentroidType    centroid1;
  itk::NumericTraits<MembershipFunctionType::CentroidType>::SetLength( centroid1,
    numberOfComponents );
  membershipFunction1->SetCentroid( centroid1 );
  membershipFunctionsVector.push_back( membershipFunction1.GetPointer() );

  MembershipFunctionPointer membershipFunction2 = MembershipFunctionType::New();
  membershipFunction1->SetMeasurementVectorSize( numberOfComponents );
  MembershipFunctionType::CentroidType    centroid2;
  itk::NumericTraits<MembershipFunctionType::CentroidType>::SetLength( centroid2,
    numberOfComponents );
  membershipFunction2->SetCentroid( centroid2 );
  membershipFunctionsVector.push_back( membershipFunction2.GetPointer() );

  MembershipFunctionPointer membershipFunction3 = MembershipFunctionType::New();
  membershipFunction3->SetMeasurementVectorSize( numberOfComponents );
  MembershipFunctionType::CentroidType    centroid3;
  itk::NumericTraits<MembershipFunctionType::CentroidType>::SetLength( centroid3,
    numberOfComponents );
  membershipFunction3->SetCentroid( centroid3 );
  membershipFunctionsVector.push_back( membershipFunction3.GetPointer() );

  try
    {
    filter->Update();
    std::cerr << "Attempting to run a classification with unequal"
              << " number of class labels and number of classes,"
              << " should throw an exception" << std::endl;
    return EXIT_FAILURE;
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << excp << std::endl;
    }


  // Add three class labels and rerun the filter
  ClassLabelVectorType & classLabelVector  = classLabelsObject->Get();

  typedef FilterType::ClassLabelType        ClassLabelType;

  ClassLabelType  class1 = 0;
  classLabelVector.push_back( class1 );

  ClassLabelType  class2 = 1;
  classLabelVector.push_back( class2 );

  ClassLabelType  class3 = 2;
  classLabelVector.push_back( class3 );


  //Run the filter without setting a decision rule. An exception should be
  //thrown
  try
    {
    filter->Update();
    std::cerr << "Attempting to run a classification without setting"
              << "decision rule, should throw an exception" << std::endl;
    return EXIT_FAILURE;
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << excp << std::endl;
    }

  //Set a decision rule type
  typedef itk::Statistics::MaximumDecisionRule  DecisionRuleType;

  DecisionRuleType::Pointer    decisionRule = DecisionRuleType::New();
  filter->SetDecisionRule( decisionRule );

  if( filter->GetDecisionRule() != decisionRule )
    {
    std::cerr << "Get/Set Decision rule error! " << std::endl;
    return EXIT_FAILURE;
    }


  try
    {
    filter->Update();
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << excp << std::endl;
    return EXIT_FAILURE;
    }

  // Test GetOutput() after creating the output
  if( filter->GetOutput() == ITK_NULLPTR )
    {
    std::cerr << "GetOutput() should have returned NON-ITK_NULLPTR" << std::endl;
    return EXIT_FAILURE;
    }

  std::cout << "Test passed." << std::endl;
  return EXIT_SUCCESS;
}