1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkListSample.h"
#include "itkSampleClassifierFilter.h"
#include "itkMinimumDecisionRule.h"
#include "itkNormalVariateGenerator.h"
#include "itkKdTreeBasedKmeansEstimator.h"
#include "itkWeightedCentroidKdTreeGenerator.h"
//run sample classifer using itk::Array type measurment vector
int itkSampleClassifierFilterTest3( int, char * [] )
{
const unsigned int numberOfComponents = 1;
typedef float MeasurementType;
const unsigned int numberOfClasses = 2;
typedef itk::Array< MeasurementType > MeasurementVectorType;
typedef itk::Statistics::ListSample< MeasurementVectorType > SampleType;
typedef itk::Statistics::SampleClassifierFilter< SampleType > FilterType;
typedef itk::Statistics::WeightedCentroidKdTreeGenerator< SampleType > GeneratorType;
typedef itk::Statistics::KdTreeBasedKmeansEstimator< GeneratorType::KdTreeType > EstimatorType;
//Generate a sample list
SampleType::Pointer sample = SampleType::New();
sample->SetMeasurementVectorSize( numberOfComponents );
typedef itk::Statistics::NormalVariateGenerator NormalGeneratorType;
NormalGeneratorType::Pointer normalGenerator = NormalGeneratorType::New();
normalGenerator->Initialize( 101 );
//Populate the list with samples from two normal distributions
EstimatorType::DistanceToCentroidMembershipFunctionType::CentroidType mean1;
itk::NumericTraits<
EstimatorType::DistanceToCentroidMembershipFunctionType::CentroidType>::SetLength(
mean1, numberOfComponents );
mean1[0] = 10.5;
EstimatorType::DistanceToCentroidMembershipFunctionType::CentroidType mean2;
itk::NumericTraits<
EstimatorType::DistanceToCentroidMembershipFunctionType::CentroidType>::SetLength(
mean2, numberOfComponents );
mean2[0] = 200.5;
MeasurementVectorType mv;
itk::NumericTraits<MeasurementVectorType>::SetLength( mv, numberOfComponents );
double mean = mean1[0];
double standardDeviation = 0.1;
unsigned int numberOfSampleEachClass = 10;
//Add sample from the first gaussian
for ( unsigned int i = 0; i < numberOfSampleEachClass; ++i )
{
mv[0] = (normalGenerator->GetVariate() * standardDeviation ) + mean;
sample->PushBack( mv );
}
//Add samples from the second gaussian
mean = mean2[0];
standardDeviation = 0.1;
for ( unsigned int i = 0; i < numberOfSampleEachClass; ++i )
{
mv[0] = (normalGenerator->GetVariate() * standardDeviation ) + mean;
sample->PushBack( mv );
}
typedef FilterType::ClassLabelVectorObjectType ClassLabelVectorObjectType;
typedef FilterType::ClassLabelVectorType ClassLabelVectorType;
ClassLabelVectorObjectType::Pointer classLabelsObject = ClassLabelVectorObjectType::New();
/* Creating k-d tree */
GeneratorType::Pointer generator = GeneratorType::New();
generator->SetSample(sample.GetPointer());
unsigned int bucketSize = 1;
generator->SetBucketSize(bucketSize);
generator->GenerateData();
/* Searching kmeans */
EstimatorType::Pointer estimator = EstimatorType::New();
itk::Array< double > initialMeans(2);
initialMeans[0] = 5;
initialMeans[1] = 70;
estimator->SetParameters(initialMeans);
unsigned int maximumIteration = 100;
estimator->SetMaximumIteration(maximumIteration);
estimator->SetKdTree(generator->GetOutput());
estimator->SetCentroidPositionChangesThreshold(0.0);
estimator->StartOptimization();
//EstimatorType::ParametersType estimatedMeans = estimator->GetParameters();
// Add class labels
ClassLabelVectorType & classLabelVector = classLabelsObject->Get();
typedef FilterType::ClassLabelType ClassLabelType;
ClassLabelType class1 = 0;
classLabelVector.push_back( class1 );
ClassLabelType class2 = 1;
classLabelVector.push_back( class2 );
//Set a decision rule type
typedef itk::Statistics::MinimumDecisionRule DecisionRuleType;
DecisionRuleType::Pointer decisionRule = DecisionRuleType::New();
const FilterType::MembershipFunctionVectorObjectType *
membershipFunctionsObject = estimator->GetOutput();
/* Print out estimated parameters of the membership function */
const FilterType::MembershipFunctionVectorType
membershipFunctions = membershipFunctionsObject->Get();
FilterType::MembershipFunctionVectorType::const_iterator
begin = membershipFunctions.begin();
FilterType::MembershipFunctionVectorType::const_iterator
end = membershipFunctions.end();
FilterType::MembershipFunctionVectorType::const_iterator functionIter;
functionIter=begin;
unsigned int counter=1;
while( functionIter != end )
{
FilterType::MembershipFunctionPointer membershipFunction = *functionIter;
const EstimatorType::DistanceToCentroidMembershipFunctionType *
distanceMemberShpFunction =
dynamic_cast<const EstimatorType::DistanceToCentroidMembershipFunctionType*>(membershipFunction.GetPointer());
std::cout << "Centroid of the " << counter << " membership function "
<< distanceMemberShpFunction->GetCentroid() << std::endl;
functionIter++;
counter++;
}
//Set membership functions weight array
FilterType::MembershipFunctionsWeightsArrayPointer weightArrayObjects =
FilterType::MembershipFunctionsWeightsArrayObjectType::New();
FilterType::MembershipFunctionsWeightsArrayType weightsArray;
// set array size different from the number of classes
unsigned int numberOfClasses2 = 3;
weightsArray.SetSize( numberOfClasses2 );
weightArrayObjects->Set( weightsArray );
//Instantiate and pass all the required inputs to the filter
FilterType::Pointer filter = FilterType::New();
filter->SetInput( sample );
filter->SetNumberOfClasses( numberOfClasses );
filter->SetClassLabels( classLabelsObject );
filter->SetDecisionRule( decisionRule );
filter->SetMembershipFunctions( membershipFunctionsObject );
filter->SetMembershipFunctionsWeightsArray( weightArrayObjects );
try
{
filter->Update();
std::cerr << "Exception should be thrown since weight array has size different"
<< "from the number of classes set" << std::endl;
return EXIT_FAILURE;
}
catch( itk::ExceptionObject & excp )
{
std::cerr << excp << std::endl;
}
filter->ResetPipeline();
FilterType::MembershipFunctionsWeightsArrayType weightsArray2;
// set correct size
weightsArray2.SetSize( numberOfClasses );
weightsArray2.Fill( 1.0 );
weightArrayObjects->Set( weightsArray2 );
try
{
filter->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
//Check if the measurement vectors are correctly labelled.
const FilterType::MembershipSampleType* membershipSample = filter->GetOutput();
FilterType::MembershipSampleType::ConstIterator iter = membershipSample->Begin();
unsigned int sampleCounter = 0;
while ( iter != membershipSample->End() )
{
if( sampleCounter < numberOfSampleEachClass )
{
if( iter.GetClassLabel() != class1 )
{
std::cerr << "Classification error: " << sampleCounter
<< "\t" << iter.GetMeasurementVector() << iter.GetClassLabel()
<< "\tclass1=" << class1 << std::endl;
return EXIT_FAILURE;
}
}
else
{
if( iter.GetClassLabel() != class2 )
{
std::cerr << "Classification error: " << sampleCounter
<< "\t" << iter.GetMeasurementVector() << iter.GetClassLabel()
<< "\tclass2=" << class2 << std::endl;
return EXIT_FAILURE;
}
}
++iter;
++sampleCounter;
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|