File: itkSampleClassifierFilterTest7.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (348 lines) | stat: -rw-r--r-- 11,546 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include <fstream>

#include "itkPointSetToListSampleAdaptor.h"
#include "itkSampleClassifierFilter.h"
#include "itkMaximumDecisionRule.h"

#include "itkGaussianMixtureModelComponent.h"
#include "itkExpectationMaximizationMixtureModelEstimator.h"

//Sample classifier test using Gaussian Mixture model and EM estimator
int itkSampleClassifierFilterTest7(int argc, char* argv[] )
{
  typedef itk::PointSet< double, 2 > PointSetType;
  typedef itk::Statistics::PointSetToListSampleAdaptor< PointSetType > DataSampleType;
  typedef itk::Statistics::ExpectationMaximizationMixtureModelEstimator< DataSampleType > EstimatorType;
  typedef itk::Statistics::GaussianMixtureModelComponent< DataSampleType > ComponentType;

  if (argc < 3)
    {
    std::cout << "ERROR: Missing arguments.\t"  << argv[0]
              << "Input_data_sample" << "\t"
              << "Target_data_sample"
              << std::endl;
    return EXIT_FAILURE;
    }

  const int maximumIteration = 200;
  const double minStandardDeviation =28.54746;
  const unsigned int numberOfClasses = 2;
  typedef itk::Array< double > ParametersType;
  std::vector< ParametersType > trueParameters(numberOfClasses);
  ParametersType params(6);
  params[0] = 99.261;
  params[1] = 100.078;
  params[2] = 814.95741;
  params[3] = 38.40308;
  params[4] = 38.40308;
  params[5] = 817.64446;
  trueParameters[0] = params;

  params[0] = 200.1;
  params[1] = 201.3;
  params[2] = 859.785295;
  params[3] = -3.617316;
  params[4] = -3.617316;
  params[5] = 848.991508;
  trueParameters[1] = params;

  // only the means are altered
  std::vector< ParametersType > initialParameters(numberOfClasses);
  params[0] = 80.0;
  params[1] = 80.0;
  params[2] = 814.95741;
  params[3] = 38.40308;
  params[4] = 38.40308;
  params[5] = 817.64446;
  initialParameters[0] = params;

  params[0] = 180.0;
  params[1] = 180.0;
  params[2] = 859.785295;
  params[3] = -3.617316;
  params[4] = -3.617316;
  params[5] = 848.991508;
  initialParameters[1] = params;

  itk::Array< double > trueProportions(numberOfClasses);
  trueProportions[0] = 0.5;
  trueProportions[1] = 0.5;

  itk::Array< double > initialProportions(numberOfClasses);
  initialProportions[0] = 0.5;
  initialProportions[1] = 0.5;

  /* Loading point data */
  PointSetType::Pointer pointSet = PointSetType::New();
  PointSetType::PointsContainerPointer pointsContainer = PointSetType::PointsContainer::New();
  const int dataSizeBig = 2000;
  pointsContainer->Reserve(dataSizeBig);
  pointSet->SetPoints(pointsContainer.GetPointer());

  PointSetType::PointsContainerIterator p_iter = pointsContainer->Begin();
  PointSetType::PointType point;

  char * const dataFileName = argv[1];
  std::ifstream dataStream(dataFileName);
  if ( !dataStream )
    {
    std::cout << "ERROR: fail to open the data file." << std::endl;
    return EXIT_FAILURE;
    }

  while (p_iter != pointsContainer->End())
    {
    for ( unsigned int i = 0; i < PointSetType::PointDimension; i++)
      {
      double temp;
      dataStream >> temp;
      point[i] = temp;
      }
    p_iter.Value() = point;
    ++p_iter;
    }

  dataStream.close();

  /* Importing the point set to the sample */
  DataSampleType::Pointer sample = DataSampleType::New();

  sample->SetPointSet(pointSet.GetPointer());

  /* Preparing the gaussian mixture components */
  typedef ComponentType::Pointer ComponentPointer;
  std::vector< ComponentPointer > components;
  for ( unsigned int i = 0; i < numberOfClasses; i++ )
    {
    components.push_back(ComponentType::New());
    (components[i])->SetSample(sample.GetPointer());
    (components[i])->SetParameters(initialParameters[i]);
    }

  /* Estimating */
  EstimatorType::Pointer estimator = EstimatorType::New();
  estimator->SetSample(sample.GetPointer());
  estimator->SetMaximumIteration(maximumIteration);
  estimator->SetInitialProportions(initialProportions);

  for ( unsigned int i = 0; i < numberOfClasses; i++)
    {
      estimator->AddComponent((ComponentType::Superclass*)
                              (components[i]).GetPointer());
    }

  estimator->Update();

  std::cout << "DEBUG: current iteration = "
            << estimator->GetCurrentIteration() << std::endl;

  bool passed = true;
  for ( unsigned int i = 0; i < numberOfClasses; i++)
    {
    std::cout << "Cluster[" << i << "]" << std::endl;
    std::cout << "    Parameters:" << std::endl;
    std::cout << "         " << (components[i])->GetFullParameters() << std::endl;
    std::cout << "    Proportion: ";
    std::cout << "         " << (estimator->GetProportions())[i] << std::endl;
    double displacement = 0.0;
    const unsigned int measurementVectorSize = sample->GetMeasurementVectorSize();
    for ( unsigned int j = 0; j < measurementVectorSize; ++j )
      {
      double temp;
      temp = (components[i])->GetFullParameters()[j] - trueParameters[i][j];
      displacement += (temp * temp);
      }
    displacement = std::sqrt(displacement);
    std::cout << "    Mean displacement: " << std::endl;
    std::cout << "        " << displacement
              << std::endl << std::endl;
    if ( displacement > (minStandardDeviation / 100.0) * 3 )
      {
      passed = false;
      }
    }

  //Set up a classifier
  typedef itk::Statistics::SampleClassifierFilter< DataSampleType > FilterType;
  FilterType::Pointer filter = FilterType::New();

  typedef FilterType::ClassLabelVectorObjectType               ClassLabelVectorObjectType;
  typedef FilterType::ClassLabelVectorType                     ClassLabelVectorType;

  ClassLabelVectorObjectType::Pointer  classLabelsObject = ClassLabelVectorObjectType::New();

  // Add class labels
  ClassLabelVectorType & classLabelVector  = classLabelsObject->Get();

  typedef FilterType::ClassLabelType        ClassLabelType;

  ClassLabelType  class1 = 0;
  classLabelVector.push_back( class1 );

  ClassLabelType  class2 = 1;
  classLabelVector.push_back( class2 );

  //Set a decision rule type
  typedef itk::Statistics::MaximumDecisionRule  DecisionRuleType;

  DecisionRuleType::Pointer    decisionRule = DecisionRuleType::New();

  const FilterType::MembershipFunctionVectorObjectType *
                membershipFunctionsObject = estimator->GetOutput();

  /* Print out estimated parameters of the membership function */

  const FilterType::MembershipFunctionVectorType
            membershipFunctions = membershipFunctionsObject->Get();

  FilterType::MembershipFunctionVectorType::const_iterator
                    begin = membershipFunctions.begin();

  FilterType::MembershipFunctionVectorType::const_iterator
                    end = membershipFunctions.end();

  FilterType::MembershipFunctionVectorType::const_iterator functionIter;

  functionIter=begin;

  unsigned int counter=1;
  std::cout << "Estimator membership function output " << std::endl;
  while( functionIter != end )
    {
    FilterType::MembershipFunctionPointer membershipFunction = *functionIter;
    const EstimatorType::GaussianMembershipFunctionType *
          gaussianMemberShpFunction =
        dynamic_cast<const EstimatorType::GaussianMembershipFunctionType*>(membershipFunction.GetPointer());
    std::cout << "\tMembership function:\t " << counter << std::endl;
    std::cout << "\t\tMean="<< gaussianMemberShpFunction->GetMean() << std::endl;
    std::cout << "\t\tCovariance matrix=" << gaussianMemberShpFunction->GetCovariance() << std::endl;
    functionIter++;
    counter++;
    }

  //Set membership functions weight array
  const FilterType::MembershipFunctionsWeightsArrayObjectType *
            weightArrayObjects = estimator->GetMembershipFunctionsWeightsArray();
  const FilterType::MembershipFunctionsWeightsArrayType  weightsArray = weightArrayObjects->Get();

  std::cout << "Estimator membership function Weight/proporation output: " << std::endl;
  for( unsigned int i=0; i < weightsArray.Size(); i++ )
    {
    std::cout << "Membership function: \t" << i << "\t" << weightsArray[i] << std::endl;
    }

  char * targetFileName = argv[2];
  std::ifstream dataTargetStream(targetFileName);
  if ( !dataTargetStream )
    {
    std::cout << "ERROR: fail to open the target data file." << std::endl;
    return EXIT_FAILURE;
    }

  PointSetType::Pointer pointSet2 = PointSetType::New();
  PointSetType::PointsContainerPointer pointsContainer2 =
    PointSetType::PointsContainer::New();
  const int dataSizeSmall = 200;
  pointsContainer2->Reserve(dataSizeSmall);
  pointSet2->SetPoints(pointsContainer2.GetPointer());

  p_iter = pointsContainer2->Begin();
  while (p_iter != pointsContainer2->End())
    {
    for ( unsigned int i = 0; i < PointSetType::PointDimension; i++)
      {
      double temp;
      dataTargetStream >> temp;
      point[i] = temp;
      }
    p_iter.Value() = point;
    ++p_iter;
    }

  dataTargetStream.close();

  /* Importing the point set to the sample */
  DataSampleType::Pointer sampleTarget = DataSampleType::New();

  sampleTarget->SetPointSet(pointSet2.GetPointer());

  filter->SetInput( sample );
  filter->SetNumberOfClasses( numberOfClasses );
  filter->SetClassLabels( classLabelsObject );
  filter->SetDecisionRule( decisionRule );
  filter->SetMembershipFunctions( membershipFunctionsObject );
  filter->SetMembershipFunctionsWeightsArray( weightArrayObjects );

  try
    {
    filter->Update();
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << excp << std::endl;
    return EXIT_FAILURE;
    }


  //Check if the measurement vectors are correctly labelled.
  const FilterType::MembershipSampleType* membershipSample = filter->GetOutput();
  FilterType::MembershipSampleType::ConstIterator iter = membershipSample->Begin();

  unsigned int sampleCounter = 0;

  unsigned int numberOfSamplesPerClass = 100;
  if( sampleCounter > numberOfSamplesPerClass )
    {
    if( iter.GetClassLabel() != class1 )
      {
      std::cerr << "Classification error: " << sampleCounter
                << "\t" << iter.GetMeasurementVector()
                << "\t" << "Class label= " << iter.GetClassLabel()
                << "\tTrue label=" << class1 << std::endl;
      return EXIT_FAILURE;
      }
    ++iter;
    ++sampleCounter;
    }

  if( sampleCounter > numberOfSamplesPerClass )
    {
    if( iter.GetClassLabel() != class1 )
      {
      std::cerr << "Classification error: " << sampleCounter
                << "\t" << iter.GetMeasurementVector()
                << "\t" << "Class label= " << iter.GetClassLabel()
                << "\tTrue label=" << class1 << std::endl;
      return EXIT_FAILURE;
      }
    ++iter;
    ++sampleCounter;
    }

  if( !passed )
    {
    std::cout << "Test failed." << std::endl;
    return EXIT_FAILURE;
    }

  std::cout << "Test passed." << std::endl;
  return EXIT_SUCCESS;
}