File: itkScalarImageKmeansImageFilterTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (154 lines) | stat: -rw-r--r-- 4,664 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkScalarImageKmeansImageFilter.h"
#include "itkRelabelComponentImageFilter.h"
#include "itkTestingMacros.h"

int itkScalarImageKmeansImageFilterTest(int argc, char* argv [] )
{
  if( argc < 5 )
    {
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0];
    std::cerr << " inputScalarImage outputLabeledImage numberOfClasses mean1 mean2... meanN " << std::endl;
    return EXIT_FAILURE;
    }

  typedef unsigned char       PixelType;
  const unsigned int          Dimension = 2;

  typedef itk::Image<PixelType, Dimension > ImageType;

  typedef itk::ImageFileReader< ImageType > ReaderType;

  ReaderType::Pointer reader = ReaderType::New();

  reader->SetFileName( argv[1] );

  try
    {
    reader->Update();
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << "Problem encoutered while reading image file : " << argv[1] << std::endl;
    std::cerr << excp << std::endl;
    return EXIT_FAILURE;
    }


  typedef itk::ScalarImageKmeansImageFilter< ImageType > KMeansFilterType;

  KMeansFilterType::Pointer kmeansFilter = KMeansFilterType::New();

  kmeansFilter->SetInput( reader->GetOutput() );

  kmeansFilter->SetUseNonContiguousLabels( argv[3] );

  const unsigned int numberOfInitialClasses = atoi( argv[4] );

  const unsigned int numberOfArgumentsBeforeMeans = 5;
  if( static_cast<unsigned int>(argc) < numberOfInitialClasses + numberOfArgumentsBeforeMeans )
    {
    std::cerr << "Error: " << std::endl;
    std::cerr << numberOfInitialClasses << " classes has been specified ";
    std::cerr << "but no enough means have been provided in the command ";
    std::cerr << "line arguments " << std::endl;
    return EXIT_FAILURE;
    }

  // before we add any mean check that an expection is thrown
  TRY_EXPECT_EXCEPTION( kmeansFilter->Update() );


  for(unsigned k=0; k<numberOfInitialClasses; k++)
    {
    kmeansFilter->AddClassWithInitialMean( atof( argv[k+numberOfArgumentsBeforeMeans] ) );
    }


  try
    {
    kmeansFilter->Update();
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << "Problem encoutered while classifying the image " << std::endl;
    std::cerr << excp << std::endl;
    return EXIT_FAILURE;
    }

  KMeansFilterType::ParametersType estimatedMeans = kmeansFilter->GetFinalMeans();

  const unsigned int numberOfClasses = estimatedMeans.Size();

  for ( unsigned int i = 0; i < numberOfClasses; ++i )
    {
    std::cout << "cluster[" << i << "] ";
    std::cout << "    estimated mean : " << estimatedMeans[i] << std::endl;
    }

  typedef KMeansFilterType::OutputImageType  OutputImageType;

  typedef itk::RelabelComponentImageFilter<
                                OutputImageType,
                                OutputImageType > RelabelFilterType;


  RelabelFilterType::Pointer relabeler = RelabelFilterType::New();

  relabeler->SetInput( kmeansFilter->GetOutput() );

  typedef itk::ImageFileWriter< OutputImageType > WriterType;
  WriterType::Pointer writer = WriterType::New();
  writer->SetInput( relabeler->GetOutput() );
  writer->SetFileName( argv[2] );

  try
    {
    writer->Update();
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << "Problem encoutered while writing image file : " << argv[2] << std::endl;
    std::cerr << excp << std::endl;
    return EXIT_FAILURE;
    }


  typedef RelabelFilterType::ObjectSizeInPixelsContainerType  SizesType;

  const SizesType &  sizes = relabeler->GetSizeOfObjectsInPixels();

  SizesType::const_iterator sizeItr = sizes.begin();
  SizesType::const_iterator sizeEnd = sizes.end();

  std::cout << "Number of pixels per class " << std::endl;
  unsigned int kclass = 0;
  while( sizeItr != sizeEnd )
    {
    std::cout << "Class " << kclass << " = " << *sizeItr << std::endl;
    ++kclass;
    ++sizeItr;
    }

  return EXIT_SUCCESS;
}