1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkKLMRegionGrowImageFilter_hxx
#define itkKLMRegionGrowImageFilter_hxx
#include "itkKLMRegionGrowImageFilter.h"
namespace itk
{
template< typename TInputImage, typename TOutputImage >
KLMRegionGrowImageFilter< TInputImage, TOutputImage >
::KLMRegionGrowImageFilter(void):
m_MaximumLambda(1000),
m_NumberOfRegions(0),
m_InternalLambda(0),
m_InitialNumberOfRegions(0),
m_TotalBorderLength(0.0),
m_BorderCandidate(ITK_NULLPTR),
m_InitialRegionArea(0)
{
m_InitialRegionMean.set_size(InputImageVectorDimension);
m_InitialRegionMean.fill(0);
this->SetMaximumNumberOfRegions(2);
}
template< typename TInputImage, typename TOutputImage >
KLMRegionGrowImageFilter< TInputImage, TOutputImage >
::~KLMRegionGrowImageFilter()
{}
/**
* PrintSelf
*/
template< typename TInputImage, typename TOutputImage >
void
KLMRegionGrowImageFilter< TInputImage, TOutputImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "KLM Region grow segmentation object" << std::endl;
os << indent << "KLM Region grow image filter object" << std::endl;
os << indent << "Maximum value of lambda parameter: " << m_MaximumLambda << std::endl;
os << indent << "Current internal value of lambda parameter: " << m_InternalLambda << std::endl;
os << indent << "Initial number of regions: " << m_InitialNumberOfRegions << std::endl;
os << indent << "Current number of regions: " << m_NumberOfRegions << std::endl;
} // end PrintSelf
/*
* GenerateInputRequestedRegion method.
*/
template< typename TInputImage, typename TOutputImage >
void
KLMRegionGrowImageFilter< TInputImage, TOutputImage >
::GenerateInputRequestedRegion()
{
// This filter requires all of the input image to be in the buffer
InputImagePointer inputPtr =
const_cast< InputImageType * >( this->GetInput() );
if ( inputPtr )
{
inputPtr->SetRequestedRegionToLargestPossibleRegion();
}
}
/**
* EnlargeOutputRequestedRegion method.
*/
template< typename TInputImage, typename TOutputImage >
void
KLMRegionGrowImageFilter< TInputImage, TOutputImage >
::EnlargeOutputRequestedRegion(
DataObject *output)
{
// This filter requires all of the output image to be in the buffer
TOutputImage *imgData;
imgData = dynamic_cast< TOutputImage * >( output );
imgData->SetRequestedRegionToLargestPossibleRegion();
}
template< typename TInputImage, typename TOutputImage >
void
KLMRegionGrowImageFilter< TInputImage, TOutputImage >
::GenerateData()
{
// Run the KLM algorithm
this->ApplyRegionGrowImageFilter();
// Set the output labelled and allocate the memory
OutputImagePointer outputPtr = this->GetOutput();
// Allocate the output buffer memory
outputPtr->SetBufferedRegion( outputPtr->GetRequestedRegion() );
outputPtr->Allocate();
GenerateOutputImage();
} // end GenerateData
template< typename TInputImage, typename TOutputImage >
void
KLMRegionGrowImageFilter< TInputImage, TOutputImage >
::GenerateOutputImage()
{
InputImageConstPointer inputImage = this->GetInput();
InputImageSizeType inputImageSize = inputImage->GetBufferedRegion().GetSize();
GridSizeType gridSize = this->GetGridSize();
InputImageSizeType numRegionsAlongDim;
for ( unsigned int idim = 0; idim < InputImageDimension; idim++ )
{
numRegionsAlongDim[idim] = inputImageSize[idim] / gridSize[idim];
}
// Walk through each atomic block and get the approximation image.
// This is needed as the region labels associated each atomic
// block (as it was for during the initialization stage), have changed.
// The new region label points to the region that has the up-to-date
// region intensity. After the updated region intensity is found,
// each pixel is updated with the mean approximation value.
OutputImagePointer outputImage = this->GetOutput();
typedef typename TOutputImage::RegionType OutputRegionType;
OutputRegionType region;
region.SetSize(gridSize); // Constant grid size
OutputImageIndexType tmpIndex;
tmpIndex.Fill(0);
for ( unsigned int iregion = 0; iregion < m_InitialNumberOfRegions; iregion++ )
{
region.SetIndex(tmpIndex * gridSize);
// Convert the mean region value to the correct output format
MeanRegionIntensityType tmpMeanValue;
OutputImageVectorType outMeanValue;
typedef typename OutputImagePixelType::ValueType OutputValueType;
tmpMeanValue = m_RegionsPointer[iregion]->GetMeanRegionIntensity();
for ( unsigned int ivecdim = 0; ivecdim < InputImageVectorDimension; ivecdim++ )
{
outMeanValue[ivecdim] =
static_cast< OutputValueType >( tmpMeanValue[ivecdim] );
}
// Fill the region with the mean value
OutputImageIterator outputIt(outputImage, region);
while ( !outputIt.IsAtEnd() )
{
outputIt.Set(outMeanValue);
++outputIt;
}
// Calculate next grid index
IndexValueType tmpVal = 1;
for ( unsigned int idim = 0; idim < InputImageDimension; idim++ )
{
tmpIndex[idim]++;
tmpVal *= numRegionsAlongDim[idim];
if ( ( iregion + 1 ) % tmpVal != 0 ) { break; }
tmpIndex[idim] = 0;
}
} // end iregion loop
} // end GenerateOutputImage()
template< typename TInputImage, typename TOutputImage >
typename KLMRegionGrowImageFilter< TInputImage, TOutputImage >::LabelImagePointer
KLMRegionGrowImageFilter< TInputImage, TOutputImage >
::GetLabelledImage()
{
// Allocate the memory for the labelled image
LabelImagePointer labelImagePtr = LabelImageType::New();
typename LabelImageType::SizeType labelImageSize =
this->GetInput()->GetBufferedRegion().GetSize();
LabelImageIndexType labelImageIndex;
labelImageIndex.Fill(0);
typename LabelImageType::RegionType labelImageRegion;
labelImageRegion.SetSize(labelImageSize);
labelImageRegion.SetIndex(labelImageIndex);
labelImagePtr->SetLargestPossibleRegion(labelImageRegion);
labelImagePtr->SetBufferedRegion(labelImageRegion);
labelImagePtr->Allocate();
labelImagePtr = GenerateLabelledImage(labelImagePtr);
return labelImagePtr;
} // end GetLabelledImage()
template< typename TInputImage, typename TOutputImage >
typename KLMRegionGrowImageFilter< TInputImage, TOutputImage >::LabelImagePointer
KLMRegionGrowImageFilter< TInputImage, TOutputImage >
::GenerateLabelledImage(LabelImageType *labelImagePtr)
{
InputImageConstPointer inputImage = this->GetInput();
InputImageSizeType inputImageSize = inputImage->GetBufferedRegion().GetSize();
GridSizeType gridSize = this->GetGridSize();
InputImageSizeType numRegionsAlongDim;
for ( unsigned int idim = 0; idim < InputImageDimension; idim++ )
{
numRegionsAlongDim[idim] = inputImageSize[idim] / gridSize[idim];
}
// Walk through each atomic block and get the new unique labels
// representing the final segmentation.
// This is needed as the region labels associated each atomic
// block (as it was during the initialization stage), have changed.
InputRegionType region;
region.SetSize(gridSize); // Constant grid size
InputImageIndexType tmpIndex;
tmpIndex.Fill(0);
for ( unsigned int iregion = 0; iregion < m_InitialNumberOfRegions; iregion++ )
{
region.SetIndex(tmpIndex * gridSize);
// Fill the region with the label
RegionLabelType newRegionLabel = m_RegionsPointer[iregion]->GetRegionLabel();
LabelImageIterator labelIt(labelImagePtr, region);
while ( !labelIt.IsAtEnd() )
{
labelIt.Set(newRegionLabel);
++labelIt;
}
// Calculate next grid index
IndexValueType tmpVal = 1;
for ( unsigned int idim = 0; idim < InputImageDimension; idim++ )
{
tmpIndex[idim]++;
tmpVal *= numRegionsAlongDim[idim];
if ( ( iregion + 1 ) % tmpVal != 0 ) { break; }
tmpIndex[idim] = 0;
}
}
// Return the reference to the labelled image
return labelImagePtr;
} // end GenerateLabelledImage()
template< typename TInputImage, typename TOutputImage >
void
KLMRegionGrowImageFilter< TInputImage, TOutputImage >
::ApplyRegionGrowImageFilter()
{
this->ApplyKLM();
} // end ApplyRegionGrowImageFilter()
template< typename TInputImage, typename TOutputImage >
void
KLMRegionGrowImageFilter< TInputImage, TOutputImage >
::ApplyKLM()
{
// Region merging based on the minimum value of the current
// lambdas associated with the borders. The border with the
// smallest lambda value will be taken out for region merging.
// This growing process is repeated until the number of current
// different regions is not bigger than the desired and the
// current minimum scale parameter is not less than the desired scale.
this->InitializeKLM();
while ( ( m_NumberOfRegions > this->GetMaximumNumberOfRegions() )
&& ( m_InternalLambda < m_MaximumLambda ) )
{
this->MergeRegions();
}
this->ResolveRegions();
} // end ApplyKLM()
template< typename TInputImage, typename TOutputImage >
void
KLMRegionGrowImageFilter< TInputImage, TOutputImage >
::InitializeKLM()
{
// Maximum number of regions requested must be greater than 0
if ( this->GetMaximumNumberOfRegions() <= 1 )
{
itkExceptionMacro(<< "Number of requested regions must be 2 or more");
}
// This implementation requires the image dimensions to be
// multiples of the user specified grid sizes.
InputImageConstPointer inputImage = this->GetInput();
InputImageSizeType inputImageSize = inputImage->GetBufferedRegion().GetSize();
GridSizeType gridSize = this->GetGridSize();
typename TInputImage::SpacingType
spacing = inputImage->GetSpacing();
for ( unsigned int idim = 0; idim < InputImageDimension; idim++ )
{
if ( gridSize[idim] == 0
|| inputImageSize[idim] % gridSize[idim] != 0 )
{
itkExceptionMacro(<< "Invalid grid size");
}
}
// Determine the regions first and intialize them
InputImageSizeType numRegionsAlongDim;
for ( unsigned int idim = 0; idim < InputImageDimension; idim++ )
{
numRegionsAlongDim[idim] = inputImageSize[idim] / gridSize[idim];
}
// Calculate the initial number of regions
m_InitialNumberOfRegions = 1;
for ( unsigned int idim = 0; idim < InputImageDimension; idim++ )
{
m_InitialNumberOfRegions *= numRegionsAlongDim[idim];
}
if ( m_InitialNumberOfRegions < this->GetMaximumNumberOfRegions() )
{
itkWarningMacro(<< "Number of initial image regions is less than requested: reduce granularity of the grid");
}
// Set current number of regions
m_NumberOfRegions = m_InitialNumberOfRegions;
// Allocate and intialize memory to the regions in initial image block
m_RegionsPointer.resize(m_InitialNumberOfRegions);
for ( unsigned int iregion = 0; iregion < m_InitialNumberOfRegions; iregion++ )
{
m_RegionsPointer[iregion] = KLMSegmentationRegion::New();
}
// Label each region
InputRegionType region;
region.SetSize(gridSize); // Constant grid size
InputImageIndexType tmpIndex;
tmpIndex.Fill(0);
for ( RegionLabelType iregion = 0; iregion < m_InitialNumberOfRegions; iregion++ )
{
region.SetIndex(tmpIndex * gridSize);
InitializeRegionParameters(region);
m_RegionsPointer[iregion]->SetRegionParameters(m_InitialRegionMean,
m_InitialRegionArea, iregion + 1);
// Calculate next grid index
IndexValueType tmpVal = 1;
for ( unsigned int idim = 0; idim < InputImageDimension; idim++ )
{
tmpIndex[idim]++;
tmpVal *= numRegionsAlongDim[idim];
if ( ( iregion + 1 ) % tmpVal != 0 ) { break; }
tmpIndex[idim] = 0;
}
} // end iregion loop
// Determine the borders next and intialize them
// Allocate and intialize memory to the borders
unsigned int numberOfBorders = 0;
for ( unsigned int idim = 0; idim < InputImageDimension; idim++ )
{
unsigned int tmpVal = 1;
for ( unsigned int jdim = 0; jdim < InputImageDimension; jdim++ )
{
tmpVal *= ( jdim == idim ?
numRegionsAlongDim[jdim] - 1 :
numRegionsAlongDim[jdim] );
}
numberOfBorders += tmpVal;
}
// Allow a single region to pass through; this memory would not be
// used but the memory allocation and free routine will throw
// exception otherwise.
if ( numberOfBorders == 0 )
{
itkExceptionMacro(<< "Number of initial regions must be 2 or more: reduce granularity of the grid");
}
m_BordersPointer.resize(numberOfBorders);
for ( unsigned int k = 0; k < m_BordersPointer.size(); k++ )
{
m_BordersPointer[k] = KLMSegmentationBorder::New();
}
/* the following initialization of the borders ensures that
each border is assigned region1 and region2 such that,
the label of region1 is less than the label of region2/
and, that when a new border is added to a region,
PushBack can be used for region1 and PushFront can be used
for region2. This will ensure that the borders are
sorted by increased labels for region1 then region2 */
m_TotalBorderLength = 0;
unsigned int borderCounter = 0;
// Along each dimension, visit every border between two regions
for ( unsigned int idim = 0; idim < InputImageDimension; idim++ )
{
// along the dimension there is one less border than there are regions
InputImageSizeType numBordersAlongDim = numRegionsAlongDim;
numBordersAlongDim[idim]--;
// compute number of borders to be seen this dimension and area of
// each border
unsigned int numBorderThisDim = 1;
double borderLengthTmp = 1;
for ( unsigned int jdim = 0; jdim < InputImageDimension; jdim++ )
{
numBorderThisDim *= numBordersAlongDim[jdim];
borderLengthTmp *= ( jdim == idim ? 1 : gridSize[jdim] * spacing[jdim] );
}
// index to atomic region1 and atomic region2
InputImageIndexType indexRegion1;
InputImageIndexType indexRegion2;
indexRegion1.Fill(0);
indexRegion2.Fill(0);
indexRegion2[idim]++;
for ( unsigned int iborder = 0; iborder < numBorderThisDim; iborder++ )
{
if ( borderCounter >= numberOfBorders )
{
itkExceptionMacro(<< "KLM initialization is incorrect");
} // end if
// Load the border of interest
KLMSegmentationBorderPtr pcurrentBorder = m_BordersPointer[borderCounter];
// Set the length of the border
pcurrentBorder->SetBorderLength(borderLengthTmp);
// m_TotalBorderLength is used as a sanity check
m_TotalBorderLength += borderLengthTmp;
// Find the two neighbor regions
unsigned int intRegion1Index = 0;
unsigned int intRegion2Index = 0;
IndexValueType tmpVal = 1;
for ( unsigned int jdim = 0; jdim < InputImageDimension; jdim++ )
{
intRegion1Index += indexRegion1[jdim] * tmpVal;
intRegion2Index += indexRegion2[jdim] * tmpVal;
tmpVal *= numRegionsAlongDim[jdim];
} // end jdim loop
KLMSegmentationRegionPtr pRegion1 = m_RegionsPointer[intRegion1Index];
KLMSegmentationRegionPtr pRegion2 = m_RegionsPointer[intRegion2Index];
// Attach the region border off lesser label value to region1
// Attach the region border of the greater label value to region2
pcurrentBorder->SetRegion1(pRegion1);
pcurrentBorder->SetRegion2(pRegion2);
// The current border is linked to the region1 and region2
// Initialize the border in the region objects
pRegion1->PushBackRegionBorder(pcurrentBorder);
pRegion2->PushFrontRegionBorder(pcurrentBorder);
// Compute the scale parameter lambda
pcurrentBorder->EvaluateLambda();
// Increment the border counter to go to the next border
borderCounter++;
// Calculate next indices to atomic region1 and atomic region2
tmpVal = 1;
for ( unsigned int jdim = 0; jdim < InputImageDimension; jdim++ )
{
indexRegion1[jdim]++;
tmpVal *= numBordersAlongDim[jdim];
if ( ( iborder + 1 ) % tmpVal != 0 ) { break; }
indexRegion1[jdim] = 0;
}
indexRegion2 = indexRegion1;
indexRegion2[idim]++;
}
}
// For DEBUG purposes
if ( this->GetDebug() )
{
PrintAlgorithmRegionStats();
PrintAlgorithmBorderStats();
}
// Verification of the initialization process
double actualBorderLength = 0;
for ( unsigned int idim = 0; idim < InputImageDimension; idim++ )
{
double tmpDblVal = 1;
for ( unsigned int jdim = 0; jdim < InputImageDimension; jdim++ )
{
tmpDblVal *= ( jdim == idim ?
numRegionsAlongDim[jdim] - 1 : inputImageSize[jdim] * spacing[jdim] );
}
actualBorderLength += tmpDblVal;
}
if ( Math::NotAlmostEquals( m_TotalBorderLength, actualBorderLength ) )
{
itkExceptionMacro(<< "KLM initialization is incorrect");
} // end if
else
{
itkDebugMacro(<< "Passed initialization");
} // end else
// Allocate memory to store the array of pointers that point to the
// static border objects
m_BordersDynamicPointer.resize( m_BordersPointer.size() );
for ( unsigned int k = 0; k < m_BordersDynamicPointer.size(); k++ )
{
m_BordersDynamicPointer[k].m_Pointer = m_BordersPointer[k];
}
// For DEBUG purposes
if ( this->GetDebug() )
{
for ( unsigned int k = 0; k < m_BordersDynamicPointer.size(); k++ )
{
itkDebugMacro(<< m_BordersDynamicPointer[k].m_Pointer);
}
}
std::stable_sort( m_BordersDynamicPointer.begin(),
( m_BordersDynamicPointer.end() ),
std::greater< KLMDynamicBorderArray< BorderType > >() );
m_BorderCandidate = &( m_BordersDynamicPointer[m_BordersDynamicPointer.size() - 1] );
m_InternalLambda = m_BorderCandidate->m_Pointer->GetLambda();
if ( m_InternalLambda < 0.0 )
{
itkExceptionMacro(<< "KLM initialization is incorrect");
}
} // end InitializeKLM()
template< typename TInputImage, typename TOutputImage >
void
KLMRegionGrowImageFilter< TInputImage, TOutputImage >
::InitializeRegionParameters(InputRegionType region)
{
// Get a pointer to the image
InputImageConstPointer inputImage = this->GetInput();
// Set the iterators and the pixel type definition for the input image
InputImageConstIterator inputIt(inputImage, region);
// Variable to store the input pixel vector value
InputImageVectorType inputPixelVec;
// Calculate V[0] for the constant model facet for the Region Growing
// algorithm
m_InitialRegionMean.fill(0);
while ( ! inputIt.IsAtEnd() )
{
inputPixelVec = inputIt.Value();
for ( unsigned int ivecdim = 0; ivecdim < InputImageVectorDimension; ivecdim++ )
{
m_InitialRegionMean[ivecdim] += inputPixelVec[ivecdim];
}
++inputIt;
}
// Calculate the area and the mean associated with the region
GridSizeType gridSize = this->GetGridSize();
typename TInputImage::SpacingType spacing = inputImage->GetSpacing();
m_InitialRegionArea = 1;
for ( unsigned int idim = 0; idim < InputImageDimension; idim++ )
{
m_InitialRegionArea *= gridSize[idim] * spacing[idim];
}
m_InitialRegionMean /= m_InitialRegionArea;
} // end InitializeRegionParameters
template< typename TInputImage, typename TOutputImage >
void
KLMRegionGrowImageFilter< TInputImage, TOutputImage >
::MergeRegions()
{
itkDebugMacro(<< "--------------------");
itkDebugMacro(<< " Merging Regions ");
// Subtract border length before removing it
m_TotalBorderLength -= m_BorderCandidate->m_Pointer->GetBorderLength();
if ( m_TotalBorderLength <= 0 ) { itkExceptionMacro(<< "KLM algorithm error"); }
// Two regions are associated with the candidate border
KLMSegmentationRegion *pRegion1;
KLMSegmentationRegion *pRegion2;
pRegion1 = m_BorderCandidate->m_Pointer->GetRegion1();
pRegion2 = m_BorderCandidate->m_Pointer->GetRegion2();
// For consistency, always assign smaller label: this affects
// GenerateOutputImage and GenerateLabelledImage
if ( pRegion1->GetRegionLabel() >= pRegion2->GetRegionLabel() )
{
itkExceptionMacro(<< "Invalid region labelling");
}
// Add the new region's parameter data to the old.
pRegion1->CombineRegionParameters(pRegion2);
// Remove the common region border from region 1 and region 2
pRegion1->DeleteRegionBorder(m_BorderCandidate->m_Pointer);
pRegion2->DeleteRegionBorder(m_BorderCandidate->m_Pointer);
// Assign new equivalence label to the old region and update
// the region borders, this is needed for ResolveRegions()
pRegion2->ResetRegionLabelAndUpdateBorders(pRegion1);
// Merge the borders and region borders of two regions
pRegion1->SpliceRegionBorders(pRegion2);
// Do not need the old region borders anymore
pRegion2->DeleteAllRegionBorders();
// Recompute the lambda's for all the borders of region1
pRegion1->UpdateRegionBorderLambda();
// Remove the common region border from list of sorted borders.
// The BorderCandidate is always the last element.
// Set the iterator to very last value and then erase that location
m_BordersDynamicPointer.erase(m_BordersDynamicPointer.end() - 1);
// Decrement for the one deleted border and a deleted region
m_NumberOfRegions--;
if ( m_BordersDynamicPointer.empty() ) { itkExceptionMacro(<< "KLM algorithm error"); }
// For DEBUG purposes
if ( this->GetDebug() )
{
itkDebugMacro(<< "First Region ");
pRegion1->PrintRegionInfo();
itkDebugMacro(<< "Second Region ");
pRegion2->PrintRegionInfo();
}
// If any duplicate borders are found during SpliceRegionBorders,
// lambda is set to -1.0, and pRegion1 and pRegion2 are set ITK_NULLPTR
// so that after this sort, the duplicate border will be the last
// entry in m_BordersDynamicPointer
// Resort the border list based on the lambda values
std::stable_sort( m_BordersDynamicPointer.begin(),
( m_BordersDynamicPointer.end() ),
std::greater< KLMDynamicBorderArray< BorderType > >() );
// Assign new BorderCandidate (it is always the last element).
// Set Pointer to BorderCandidate to the last element
m_BorderCandidate = &( m_BordersDynamicPointer[m_BordersDynamicPointer.size() - 1] );
m_InternalLambda = m_BorderCandidate->m_Pointer->GetLambda();
// Remove any duplicate borders found during SpliceRegionBorders:
// lambda = -1.0, pRegion1 and pRegion2 = ITK_NULLPTR
while ( m_BorderCandidate->m_Pointer->GetRegion1() == ITK_NULLPTR
|| m_BorderCandidate->m_Pointer->GetRegion2() == ITK_NULLPTR )
{
m_BordersDynamicPointer.erase(m_BordersDynamicPointer.end() - 1);
// Decrement for the one deleted border
if ( m_BordersDynamicPointer.empty() ) { itkExceptionMacro(<< "KLM algorithm error"); }
m_BorderCandidate = &( m_BordersDynamicPointer[m_BordersDynamicPointer.size() - 1] );
m_InternalLambda = m_BorderCandidate->m_Pointer->GetLambda();
}
} // end MergeRegions
template< typename TInputImage, typename TOutputImage >
void
KLMRegionGrowImageFilter< TInputImage, TOutputImage >
::ResolveRegions()
{
InputImageConstPointer inputImage = this->GetInput();
// Scan through the region labels to establish the correspondence
// between the final region (and label) and the initial regions.
// Set up the unique label container class
typedef std::vector< RegionLabelType > UnsignedIntVectorType;
UnsignedIntVectorType uniqueLabelsVec;
// Resolve region labels to contain only unique labels.
// Go backward from largest to smallest region label
std::vector< KLMSegmentationRegionPtr >::reverse_iterator regionsPointerIt =
m_RegionsPointer.rbegin();
std::vector< KLMSegmentationRegionPtr >::reverse_iterator regionsPointerItEnd =
m_RegionsPointer.rend();
RegionLabelType iregion = m_InitialNumberOfRegions;
while ( regionsPointerIt != regionsPointerItEnd )
{
RegionLabelType origLabel = iregion;
iregion--;
RegionLabelType currLabel = m_RegionsPointer[iregion]->GetRegionLabel();
// Unresolved chain
if ( currLabel != origLabel )
{
// Resolve a chain of equivalences by first finding the end of the chain
RegionLabelType uniqLabel = origLabel;
RegionLabelType tmpLabel = currLabel;
while ( uniqLabel != tmpLabel )
{
// In memory, the regions go from 0 to label-1. Hence the -1 offset
uniqLabel = tmpLabel;
tmpLabel = m_RegionsPointer[uniqLabel - 1]->GetRegionLabel();
} // end of chain (while loop)
// Then re-walk the chain to change the label of each chain
// member to be the last one just retrieved (uniqLabel)
while ( currLabel != origLabel )
{
m_RegionsPointer[origLabel - 1]->SetRegionLabel(uniqLabel);
origLabel = currLabel;
currLabel = m_RegionsPointer[origLabel - 1]->GetRegionLabel();
} // end of while ( currLabel != origLabel )
} // end of the if condition for detecting unresolved chain
else // The original label is unique, record it
{
uniqueLabelsVec.push_back(origLabel);
}
regionsPointerIt++;
} // end of all regions
// Sort the unique labels
std::sort( uniqueLabelsVec.begin(), uniqueLabelsVec.end() );
// Remap sorted unique labels to consecutive values
UnsignedIntVectorType remapLabelsVec(m_InitialNumberOfRegions, 0);
UnsignedIntVectorType::iterator uniqueLabelsVecIterator;
uniqueLabelsVecIterator = uniqueLabelsVec.begin();
RegionLabelType newLabelValue = 1;
while ( uniqueLabelsVecIterator != uniqueLabelsVec.end() )
{
remapLabelsVec[*uniqueLabelsVecIterator - 1] = newLabelValue;
uniqueLabelsVecIterator++;
newLabelValue++;
}
// Assign new consecutive labels
for ( iregion = 0; iregion < m_InitialNumberOfRegions; iregion++ )
{
RegionLabelType labelValue = m_RegionsPointer[iregion]->GetRegionLabel();
newLabelValue = remapLabelsVec[labelValue - 1];
double newAreaValue = m_RegionsPointer[labelValue - 1]->GetRegionArea();
MeanRegionIntensityType newMeanValue =
m_RegionsPointer[labelValue - 1]->GetMeanRegionIntensity();
m_RegionsPointer[iregion]->SetRegionParameters(newMeanValue,
newAreaValue,
newLabelValue);
} // end looping through the regions
} // end ResolveRegions()
template< typename TInputImage, typename TOutputImage >
void
KLMRegionGrowImageFilter< TInputImage, TOutputImage >
::PrintAlgorithmRegionStats()
{
// Print the stats associated with all the regions
for ( unsigned int k = 0; k < m_InitialNumberOfRegions; k++ )
{
int i = static_cast<int>( m_RegionsPointer[k]->GetRegionBorderSize() );
if ( i > 0 )
{
std::cout << "Stats for Region No: "
<< m_RegionsPointer[k]->GetRegionLabel()
<< std::endl;
m_RegionsPointer[k]->PrintRegionInfo();
}
} // end region printloop
} // end PrintAlgorithmRegionStats
template< typename TInputImage, typename TOutputImage >
void
KLMRegionGrowImageFilter< TInputImage, TOutputImage >
::PrintAlgorithmBorderStats()
{
// Print the stats associated with all the regions
for ( unsigned int k = 0; k < m_BordersDynamicPointer.size(); k++ )
{
std::cout << "Stats for Border No: " << ( k + 1 ) << std::endl;
m_BordersDynamicPointer[k].m_Pointer->PrintBorderInfo();
} // end region printloop
} // end PrintAlgorithmBorderStats
} // namespace itk
#endif
|