File: itkMultiLabelSTAPLEImageFilterTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (203 lines) | stat: -rw-r--r-- 6,597 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#include "itkMultiLabelSTAPLEImageFilter.h"

int itkMultiLabelSTAPLEImageFilterTest(int, char* [] )
{

  // Define the dimension of the images
  const unsigned int myDimension = 3;

  // Declare the types of the images
  typedef itk::Image<unsigned int, myDimension>  myImageType;

  // Input data arrays for test images
  const unsigned int dataImageA[8] = { 0, 1, 3, 3, 4, 6, 6, 0 };
  const unsigned int dataImageB[8] = { 1, 1, 2, 4, 4, 5, 7, 1 };
  const unsigned int dataImageC[8] = { 0, 2, 2, 3, 5, 5, 6, 8 };

  // Correct combinations of input images
  const unsigned int combinationABC[8] =            { 0, 1, 2, 3, 4, 5, 6, 9 };
  const unsigned int combinationAB[8] =             { 8, 1, 8, 8, 4, 8, 8, 8 };
  const unsigned int combinationABundecided255[8] = { 8, 1, 8, 8, 4, 8, 8, 8 };

  // Declare the type of the index to access images
  typedef itk::Index<myDimension>                  myIndexType;

  // Declare the type of the size
  typedef itk::Size<myDimension>                   mySizeType;

  // Declare the type of the Region
  typedef itk::ImageRegion<myDimension>            myRegionType;

  // Declare Iterator type appropriate for image
  typedef itk::ImageRegionIterator<myImageType>    myIteratorType;

  // Declare the type for the ADD filter
  typedef itk::MultiLabelSTAPLEImageFilter<myImageType> myFilterType;
  typedef myFilterType::Pointer                         myFilterTypePointer;

  // Declare the pointers to images
  typedef myImageType::Pointer   myImageTypePointer;

  // Create two images
  myImageTypePointer inputImageA = myImageType::New();
  myImageTypePointer inputImageB = myImageType::New();
  myImageTypePointer inputImageC = myImageType::New();

  myRegionType region;
    {
    // Define their size, and start index
    mySizeType size;
    size[0] = 2;
    size[1] = 2;
    size[2] = 2;

    myIndexType start;
    start[0] = 0;
    start[1] = 0;
    start[2] = 0;

    region.SetIndex( start );
    region.SetSize( size );
    }

  // Initialize Image A
  inputImageA->SetLargestPossibleRegion( region );
  inputImageA->SetBufferedRegion( region );
  inputImageA->SetRequestedRegion( region );
  inputImageA->Allocate();

  myIteratorType it =
    myIteratorType( inputImageA, inputImageA->GetBufferedRegion() );

  for( unsigned int i = 0; i < 8; ++i, ++it )
    {
    it.Set( dataImageA[i] );
    }

  // Initialize Image B
  inputImageB->SetLargestPossibleRegion( region );
  inputImageB->SetBufferedRegion( region );
  inputImageB->SetRequestedRegion( region );
  inputImageB->Allocate();

  it = myIteratorType( inputImageB, inputImageB->GetBufferedRegion() );
  for( unsigned int i = 0; i < 8; ++i, ++it )
    {
    it.Set( dataImageB[i] );
    }

  // Initialize Image C
  inputImageC->SetLargestPossibleRegion( region );
  inputImageC->SetBufferedRegion( region );
  inputImageC->SetRequestedRegion( region );
  inputImageC->Allocate();

  it = myIteratorType( inputImageC, inputImageC->GetBufferedRegion() );
  for( unsigned int i = 0; i < 8; ++i, ++it )
    {
    it.Set( dataImageC[i] );
    }

  // Create an LabelVoting Filter
  myFilterTypePointer filter = myFilterType::New();

  // Get the Smart Pointer to the Filter Output
  myImageTypePointer outputImage = filter->GetOutput();

  // = test first two input images with undecided label set to 255 = //

  // Connect the first two input images
  filter->SetInput( 0, inputImageA );
  filter->SetInput( 1, inputImageB );

  // Set label for undecided pixels
  filter->SetLabelForUndecidedPixels( 255 );

  // Execute the filter
  filter->Update();

  // compare to correct results
  it = myIteratorType( outputImage, outputImage->GetBufferedRegion() );
  for( unsigned int i = 0; i < 8; ++i, ++it )
    {
    if( combinationABundecided255[i] != it.Get() )
      {
      std::cout << "Incorrect result using images A,B and undecided=255: "
                << "i = " << i
                << ", correct = " << combinationABundecided255[i]
                << ", got = " << it.Get() << "\n";
      return EXIT_FAILURE;
      }
    }

  // =========== test first two input images ============ //

  // unset undecided pixel label; reinstate automatic selection
  filter->UnsetLabelForUndecidedPixels();

  // Execute the filter
  filter->Update();

  // compare to correct results
  it = myIteratorType( outputImage, outputImage->GetBufferedRegion() );
  for( unsigned int i = 0; i < 8; ++i, ++it )
    {
    if( combinationAB[i] != it.Get() )
      {
      std::cout << "Incorrect result using images A,B: i = " << i
                << ", correct = " << combinationAB[i]
                << ", got = " << it.Get() << "\n";
      return EXIT_FAILURE;
      }
    }

  // =========== test all three input images ============ //

  // connect third input image
  filter->SetInput( 2, inputImageC );

  // Execute the filter
  filter->Update();

  // compare to correct results
  it = myIteratorType( outputImage, outputImage->GetBufferedRegion() );
  for( unsigned int i = 0; i < 8; ++i, ++it )
    {
    if( combinationABC[i] != it.Get() )
      {
      std::cout << "Incorrect result using images A,B,C: i = " << i
                << ", correct = " << combinationABC[i]
                << ", got = " << it.Get() << "\n";
      return EXIT_FAILURE;
      }
    }

  filter->Print( std::cout, 3 );

  std::cout << "Prior probabilities: " << filter->GetPriorProbabilities() << std::endl;
  std::cout << "Confusion matrix 0 " << std::endl << filter->GetConfusionMatrix( 0 ) << std::endl;
  std::cout << "Confusion matrix 1 " << std::endl << filter->GetConfusionMatrix( 1 ) << std::endl;
  std::cout << "Confusion matrix 2 " << std::endl << filter->GetConfusionMatrix( 2 ) << std::endl;

  std::cout << "Success!\n";

  // All objects should be automatically destroyed at this point
  return EXIT_SUCCESS;
}