1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkCurvesLevelSetImageFilter_h
#define itkCurvesLevelSetImageFilter_h
#include "itkSegmentationLevelSetImageFilter.h"
#include "itkCurvesLevelSetFunction.h"
namespace itk
{
/** \class CurvesLevelSetImageFilter
* \brief Segments structures in images based on user supplied edge potential map.
*
* \par IMPORTANT
* The SegmentationLevelSetImageFilter class and the
* CurvesLevelSetFunction class contain additional information necessary
* to the full understanding of how to use this filter.
*
* \par OVERVIEW
* This class is a level set method segmentation filter. An initial contour
* is propagated outwards (or inwards) until it sticks to the shape boundaries.
* This is done by using a level set speed function based on a user supplied
* edge potential map.
*
* \par INPUTS
* This filter requires two inputs. The first input is a initial level set.
* The initial level set is a real image which contains the initial contour/surface
* as the zero level set. For example, a signed distance function from the initial
* contour/surface is typically used. Unlike the simpler ShapeDetectionLevelSetImageFilter
* the initial contour does not have to lie wholly within the shape to be segmented.
* The initial contour is allow to overlap the shape boundary. The extra advection term
* in the update equation behaves like a doublet and attracts the contour to the boundary.
* This approach for segmentation follows that of Lorigo et al (2001).
*
* \par
* The second input is the feature image. For this filter, this is the edge
* potential map. General characteristics of an edge potential map is that
* it has values close to zero in regions near the edges and values close
* to one inside the shape itself. Typically, the edge potential map is compute
* from the image gradient, for example:
*
* \f[ g(I) = 1 / ( 1 + | (\nabla * G)(I)| ) \f]
* \f[ g(I) = \exp^{-|(\nabla * G)(I)|} \f]
*
* where \f$ I \f$ is image intensity and
* \f$ (\nabla * G) \f$ is the derivative of Gaussian operator.
*
* \par
* See SegmentationLevelSetImageFilter and SparseFieldLevelSetImageFilter
* for more information on Inputs.
*
* \par PARAMETERS
* The method SetUseNegatiiveFeatures() can be used to switch from propagating inwards (false)
* versus propagting outwards (true).
*
* This implementation allows the user to set the weights between the propagation, advection
* and curvature term using methods SetPropagationScaling(), SetAdvectionScaling(),
* SetCurvatureScaling(). In general, the larger the CurvatureScaling, the smoother the
* resulting contour. To follow the implementation in Caselles's paper,
* set the PropagationScaling to \f$ c \f$ (the inflation or ballon force) and
* AdvectionScaling and CurvatureScaling both to 1.0.
*
* \par OUTPUTS
* The filter outputs a single, scalar, real-valued image.
* Negative values in the output image are inside the segmentated region
* and positive values in the image are outside of the inside region. The
* zero crossings of the image correspond to the position of the level set
* front.
*
* \par REFERENCES
* L. Lorigo, O. Faugeras, W.E.L. Grimson, R. Keriven, R. Kikinis, A. Nabavi,
* and C.-F. Westin, Curves: Curve evolution for vessel segmentation.
* Medical Image Analysis, 5:195-206, 2001.
*
* \par
* See SparseFieldLevelSetImageFilter and
* SegmentationLevelSetImageFilter for more information.
*
* \sa SegmentationLevelSetImageFilter
* \sa CurvesLevelSetFunction
* \sa SparseFieldLevelSetImageFilter
*
* \ingroup LevelSetSegmentation
* \ingroup ITKLevelSets
*/
template< typename TInputImage,
typename TFeatureImage,
typename TOutputPixelType = float >
class ITK_TEMPLATE_EXPORT CurvesLevelSetImageFilter:
public SegmentationLevelSetImageFilter< TInputImage, TFeatureImage, TOutputPixelType >
{
public:
/** Standard class typedefs */
typedef CurvesLevelSetImageFilter Self;
typedef SegmentationLevelSetImageFilter< TInputImage, TFeatureImage, TOutputPixelType > Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
/** Inherited typedef from the superclass. */
typedef typename Superclass::ValueType ValueType;
typedef typename Superclass::OutputImageType OutputImageType;
typedef typename Superclass::FeatureImageType FeatureImageType;
/** Type of the segmentation function */
typedef CurvesLevelSetFunction< OutputImageType, FeatureImageType > CurvesFunctionType;
typedef typename CurvesFunctionType::Pointer CurvesFunctionPointer;
/** Run-time type information (and related methods). */
itkTypeMacro(CurvesLevelSetImageFilter, SegmentationLevelSetImageFilter);
/** Method for creation through the object factory */
itkNewMacro(Self);
/** Set the value of sigma used to compute derivatives */
void SetDerivativeSigma(float value)
{
m_CurvesFunction->SetDerivativeSigma(value);
this->Modified();
}
float GetDerivativeSigma() const
{ return m_CurvesFunction->GetDerivativeSigma(); }
#ifdef ITK_USE_CONCEPT_CHECKING
// Begin concept checking
itkConceptMacro( OutputHasNumericTraitsCheck,
( Concept::HasNumericTraits< TOutputPixelType > ) );
// End concept checking
#endif
protected:
~CurvesLevelSetImageFilter() ITK_OVERRIDE {}
CurvesLevelSetImageFilter();
virtual void PrintSelf(std::ostream & os, Indent indent) const ITK_OVERRIDE;
ITK_DISALLOW_COPY_AND_ASSIGN(CurvesLevelSetImageFilter);
/** Overridden from Superclass to handle the case when PropagationScaling is
zero.*/
void GenerateData() ITK_OVERRIDE;
private:
CurvesFunctionPointer m_CurvesFunction;
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkCurvesLevelSetImageFilter.hxx"
#endif
#endif
|