File: itkCurvesLevelSetImageFilter.h

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (167 lines) | stat: -rw-r--r-- 6,920 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkCurvesLevelSetImageFilter_h
#define itkCurvesLevelSetImageFilter_h

#include "itkSegmentationLevelSetImageFilter.h"
#include "itkCurvesLevelSetFunction.h"

namespace itk
{
/** \class CurvesLevelSetImageFilter
 *  \brief Segments structures in images based on user supplied edge potential map.
 *
 *   \par IMPORTANT
 *   The SegmentationLevelSetImageFilter class and the
 *   CurvesLevelSetFunction class contain additional information necessary
 *   to the full understanding of how to use this filter.
 *
 *    \par OVERVIEW
 *    This class is a level set method segmentation filter. An initial contour
 *    is propagated outwards (or inwards) until it sticks to the shape boundaries.
 *    This is done by using a level set speed function based on a user supplied
 *    edge potential map.
 *
 *    \par INPUTS
 *    This filter requires two inputs.  The first input is a initial level set.
 *    The initial level set is a real image which contains the initial contour/surface
 *    as the zero level set. For example, a signed distance function from the initial
 *    contour/surface is typically used. Unlike the simpler ShapeDetectionLevelSetImageFilter
 *    the initial contour does not have to lie wholly within the shape to be segmented.
 *    The initial contour is allow to overlap the shape boundary. The extra advection term
 *    in the update equation behaves like a doublet and attracts the contour to the boundary.
 *    This approach for segmentation follows that of Lorigo et al (2001).
 *
 *    \par
 *    The second input is the feature image.  For this filter, this is the edge
 *    potential map. General characteristics of an edge potential map is that
 *    it has values close to zero in regions near the edges and values close
 *    to one inside the shape itself. Typically, the edge potential map is compute
 *    from the image gradient, for example:
 *
 *    \f[ g(I) = 1 / ( 1 + | (\nabla * G)(I)| ) \f]
 *    \f[ g(I) = \exp^{-|(\nabla * G)(I)|} \f]
 *
 *    where \f$ I \f$ is image intensity and
 *    \f$ (\nabla * G) \f$ is the derivative of Gaussian operator.
 *
 *    \par
 *    See SegmentationLevelSetImageFilter and SparseFieldLevelSetImageFilter
 *    for more information on Inputs.
 *
 *    \par PARAMETERS
 *    The method SetUseNegatiiveFeatures() can be used to switch from propagating inwards (false)
 *    versus propagting outwards (true).
 *
 *    This implementation allows the user to set the weights between the propagation, advection
 *    and curvature term using methods SetPropagationScaling(), SetAdvectionScaling(),
 *    SetCurvatureScaling(). In general, the larger the CurvatureScaling, the smoother the
 *    resulting contour. To follow the implementation in Caselles's paper,
 *    set the PropagationScaling to \f$ c \f$ (the inflation or ballon force) and
 *    AdvectionScaling and CurvatureScaling both to 1.0.
 *
 *    \par OUTPUTS
 *    The filter outputs a single, scalar, real-valued image.
 *    Negative values in the output image are inside the segmentated region
 *    and positive values in the image are outside of the inside region.  The
 *    zero crossings of the image correspond to the position of the level set
 *    front.
 *
 *    \par REFERENCES
 *    L. Lorigo, O. Faugeras, W.E.L. Grimson, R. Keriven, R. Kikinis, A. Nabavi,
 *    and C.-F. Westin, Curves: Curve evolution for vessel segmentation.
 *    Medical Image Analysis, 5:195-206, 2001.
 *
 *   \par
 *   See SparseFieldLevelSetImageFilter and
 *   SegmentationLevelSetImageFilter for more information.
 *
 *   \sa SegmentationLevelSetImageFilter
 *   \sa CurvesLevelSetFunction
 *   \sa SparseFieldLevelSetImageFilter
 *
 *   \ingroup LevelSetSegmentation
 * \ingroup ITKLevelSets
 */
template< typename TInputImage,
          typename TFeatureImage,
          typename TOutputPixelType = float >
class ITK_TEMPLATE_EXPORT CurvesLevelSetImageFilter:
  public SegmentationLevelSetImageFilter< TInputImage, TFeatureImage, TOutputPixelType >
{
public:
  /** Standard class typedefs */
  typedef CurvesLevelSetImageFilter                                                        Self;
  typedef  SegmentationLevelSetImageFilter< TInputImage, TFeatureImage, TOutputPixelType > Superclass;
  typedef SmartPointer< Self >                                                             Pointer;
  typedef SmartPointer< const Self >                                                       ConstPointer;

  /** Inherited typedef from the superclass. */
  typedef typename Superclass::ValueType        ValueType;
  typedef typename Superclass::OutputImageType  OutputImageType;
  typedef typename Superclass::FeatureImageType FeatureImageType;

  /** Type of the segmentation function */
  typedef CurvesLevelSetFunction< OutputImageType, FeatureImageType > CurvesFunctionType;
  typedef typename CurvesFunctionType::Pointer                        CurvesFunctionPointer;

  /** Run-time type information (and related methods). */
  itkTypeMacro(CurvesLevelSetImageFilter, SegmentationLevelSetImageFilter);

  /** Method for creation through the object factory */
  itkNewMacro(Self);

  /** Set the value of sigma used to compute derivatives */
  void SetDerivativeSigma(float value)
  {
    m_CurvesFunction->SetDerivativeSigma(value);
    this->Modified();
  }

  float GetDerivativeSigma() const
  { return m_CurvesFunction->GetDerivativeSigma(); }

#ifdef ITK_USE_CONCEPT_CHECKING
  // Begin concept checking
  itkConceptMacro( OutputHasNumericTraitsCheck,
                   ( Concept::HasNumericTraits< TOutputPixelType > ) );
  // End concept checking
#endif

protected:
  ~CurvesLevelSetImageFilter() ITK_OVERRIDE {}
  CurvesLevelSetImageFilter();

  virtual void PrintSelf(std::ostream & os, Indent indent) const ITK_OVERRIDE;

  ITK_DISALLOW_COPY_AND_ASSIGN(CurvesLevelSetImageFilter);

  /** Overridden from Superclass to handle the case when PropagationScaling is
    zero.*/
  void GenerateData() ITK_OVERRIDE;

private:
  CurvesFunctionPointer m_CurvesFunction;
};
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkCurvesLevelSetImageFilter.hxx"
#endif

#endif