File: itkNarrowBandLevelSetImageFilter.h

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (409 lines) | stat: -rw-r--r-- 16,196 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkNarrowBandLevelSetImageFilter_h
#define itkNarrowBandLevelSetImageFilter_h

#include "itkNarrowBandImageFilterBase.h"
#include "itkSegmentationLevelSetFunction.h"
#include "itkFastChamferDistanceImageFilter.h"
#include "itkIsoContourDistanceImageFilter.h"
#include "itkMath.h"

namespace itk
{
/**
 *
 * \class NarrowBandLevelSetImageFilter
 *
 * \brief A base class which defines the API for implementing a special class of
 * image segmentation filters using level set methods.
 *
 * \par OVERVIEW
 * This object defines the framework for a class of segmentation filters which
 * use level set methods.  These filters work by constructing a "feature image"
 * onto which the evolving level set locks as it moves.  In the feature image,
 * values that are close to zero are associated with object boundaries.  An
 * original (or preprocessed) image is given to the filter as the feature image
 * and a seed for the level set is given as the input of the filter.  The seed is
 * converted into a level set embedding which propagates according to the features
 * calculated from the original image.
 *
 * \par TEMPLATE PARAMETERS
 * There are two required and two optional template parameter for these
 * filters. Of the optional parameters, the last, TOutputImage, should not be
 * changed from its default.  It is only there to instantiate the parent class
 * correctly.
 *
 * TInputImage is the image type of the initial model you will input to the
 * filter using SetInput() or SetInitialImage().
 *
 * TFeatureImage is the image type of the image from which the filter will
 * calculate the speed term for segmentation (see INPUTS).
 *
 * TOutputPixelType is the data type used for the output image phi, the implicit
 * level set image.  This should really only ever be set as float (default) or
 * double.
 *
 * \par INPUTS
 * The input to any subclass of this filter is the seed image for the initial
 * level set embedding.  As with other subclasses of the
 * SparseLevelSetImageFilter, the type of the input image is is not important.
 * The (RequestedRegion) size of the seed image must, however, match the
 * (RequestedRegion) size of the feature image.
 *
 * You must identify the initial front (surface) in the input image.  You do
 * this by specifying its isovalue through the method SetIsoSurfaceValue(float
 * f).  The algorithm will then initialize its solution using the front represented by
 * value f.  Note that the front is always represented by isosurface zero in
 * the output and not the isosurface you specified for the input.  This is
 * because, for simplicity, the filter will shift your input image so that the
 * active front has zero values.
 *
 * \par
 * Depending on the particular application and filter that you are using, the
 * feature image should be preprocessed with some type of noise reduction
 * filtering.  The feature image input can be of any type, but it will be cast
 * to floating point before calculations are done.
 *
 * \par OUTPUTS
 * The output of any subclass of this filter is a level set embedding as
 * described in SparseFieldLevelSetImageFilter.  The zero crossings of the output
 * image give the pixels closest to the level set boundary.  By ITK convention,
 * NEGATIVE values are pixels INSIDE the segmented region and POSITIVE values are
 * pixels OUTSIDE the segmented region.
 *
 * \par PARAMETERS
 * The MaximumRMSChange parameter is used to determine when the solution has
 * converged.  A lower value will result in a tighter-fitting solution, but
 * will require more computations.  Too low a value could put the solver into
 * an infinite loop unless a reasonable NumberOfIterations parameter is set.
 * Values should always be greater than 0.0 and less than 1.0.
 *
 * \par
 * The NumberOfIterations parameter can be used to halt the solution after a
 * specified number of iterations, overriding the MaximumRMSChange halting
 * criteria.
 *
 * \par
 * The standard convention for ITK level-set segmentation filters is that
 * POSITIVE propagation (speed) and advection terms cause the surface to EXPAND
 * while negative terms cause the surface to CONTRACT.  When the
 * ReverseExpansionDirection parameter is set to TRUE (on), it tells the
 * function object to reverse the standard ITK convention so that NEGATIVE
 * terms cause EXPANSION and positive terms cause CONTRACTION.
 *
 * This parameter can be safely changed as appropriate for a particular
 * application or data set to achieve the desired behavior.
 *
 * \par
 * The FeatureScaling parameter controls the magnitude of the features calculated
 * for use in the level set propagation and advection speeds.  This value simply
 * sets both parameters to equal values at once.  Some filters may only use on of
 * these two terms and this method is a generic way to set either or both without
 * having to know which is in use.
 *
 * \par
 * The CurvatureScaling parameter controls the magnitude of the curvature values
 * which are calculated on the evolving isophote.  This is important in
 * controlling the relative effect of curvature in the calculation.  Default
 * value is 1.0.  Higher values relative to the other level set equation terms
 * (propagation and advection) will give a smoother result.
 *
 * \par
 * The PropagationScaling parameter controls the scaling of the scalar
 * propagation (speed) term relative to other terms in the level set
 * equation. Setting this value will  override any value already set by
 * FeatureScaling.
 *
 * \par
 * The AdvectionScaling parameter controls the scaling of the vector
 * advection field term relative to other terms in the level set
 * equation. Setting this value will  override any value already set by
 * FeatureScaling.
 *
 * \par
 *  See LevelSetFunction for more information.
 * \ingroup ITKLevelSets
 */
template< typename TInputImage,
          typename TFeatureImage,
          typename TOutputPixelType = float,
          typename TOutputImage = Image< TOutputPixelType,
                                      TInputImage::ImageDimension > >
class ITK_TEMPLATE_EXPORT NarrowBandLevelSetImageFilter:
  public NarrowBandImageFilterBase< TInputImage, TOutputImage >
{
public:
  /** Standard class typedefs */
  typedef NarrowBandLevelSetImageFilter                          Self;
  typedef NarrowBandImageFilterBase< TInputImage, TOutputImage > Superclass;
  typedef SmartPointer< Self >                                   Pointer;
  typedef SmartPointer< const Self >                             ConstPointer;

  /** Inherited typedef from the superclass. */
  typedef typename Superclass::ValueType      ValueType;
  typedef typename Superclass::IndexType      IndexType;
  typedef typename Superclass::TimeStepType   TimeStepType;
  typedef typename Superclass::InputImageType InputImageType;

  /** Local image typedefs */
  typedef TOutputImage  OutputImageType;
  typedef TFeatureImage FeatureImageType;

  /** The generic level set function type */
  typedef SegmentationLevelSetFunction< OutputImageType, FeatureImageType >
  SegmentationFunctionType;

  /** The type used for the advection field */
  typedef typename SegmentationFunctionType::VectorImageType VectorImageType;

  /** Run-time type information (and related methods). */
  itkTypeMacro(NarrowBandLevelSetImageFilter, NarrowBandImageFilterBase);

  /** Set/Get the feature image to be used for speed function of the level set
   *  equation.  Equivalent to calling Set/GetInput(1, ..) */
  virtual void SetFeatureImage(const FeatureImageType *f)
  {
    this->ProcessObject::SetNthInput( 1, const_cast< FeatureImageType * >( f ) );
    m_SegmentationFunction->SetFeatureImage(f);
  }

  virtual FeatureImageType * GetFeatureImage()
  {
    return ( static_cast< FeatureImageType * >( this->ProcessObject::GetInput(1) ) );
  }

  /** Set/Get the initial level set model.  Equivalent to calling SetInput(..)
      */
  virtual void SetInitialImage(InputImageType *f)
  {
    this->SetInput(f);
  }

  virtual const typename SegmentationFunctionType::ImageType * GetSpeedImage() const
  { return m_SegmentationFunction->GetSpeedImage(); }

  virtual const typename SegmentationFunctionType::VectorImageType * GetAdvectionImage() const
  { return m_SegmentationFunction->GetAdvectionImage(); }

  /** THIS METHOD IS DEPRECATED AND SHOULD NOT BE USED.  This method reverses
   * the speed function direction, effectively changing inside feature values to
   * outside feature values and vice versa. */
  void SetUseNegativeFeaturesOn()
  {
    itkWarningMacro(
      << "SetUseNegativeFeaturesOn has been deprecated.  Please use ReverseExpansionDirectionOn() instead");
    this->ReverseExpansionDirectionOn();
  }

  void SetUseNegativeFeaturesOff()
  {
    itkWarningMacro(
      << "SetUseNegativeFeaturesOff has been deprecated.  Please use ReverseExpansionDirectionOff() instead");
    this->ReverseExpansionDirectionOff();
  }

  /** Set/Get the value of the UseNegativeFeatures flag.  This method is
   * deprecated.  Use Set/Get ReverseExpansionDirection instead. */
  void SetUseNegativeFeatures(bool u)
  {
    itkWarningMacro(<< "SetUseNegativeFeatures has been deprecated.  Please use SetReverseExpansionDirection instead");
    if ( u == true )
      {
      this->SetReverseExpansionDirection(false);
      }
    else
      {
      this->SetReverseExpansionDirection(true);
      }
  }

  bool GetUseNegativeFeatures() const
  {
    itkWarningMacro(<< "GetUseNegativeFeatures has been deprecated.  Please use GetReverseExpansionDirection() instead");
    if ( this->GetReverseExpansionDirection() == false )
      {
      return true;
      }
    else
      {
      return false;
      }
  }

  /** Turn On/Off the flag which determines whether Positive or Negative speed
   * terms will cause surface expansion.  If set to TRUE then negative speed
   * terms will cause the surface to expand and positive speed terms will cause
   * the surface to contract.  If set to FALSE (default) then positive speed terms will
   * cause the surface to expand and negative speed terms will cause the
   * surface to contract.  This method can be safely used to reverse the
   * expansion/contraction as appropriate to a particular application or data
   * set. */
  itkSetMacro(ReverseExpansionDirection, bool);
  itkGetConstMacro(ReverseExpansionDirection, bool);
  itkBooleanMacro(ReverseExpansionDirection);

  /** Combined scaling of the propagation and advection speed
      terms. You should use either this -or- Get/SetPropagationScaling and
      Get/SetAdvectionScaling (if appropriate).  See subclasses for details
      on when and whether to set these parameters. */
  void SetFeatureScaling(ValueType v)
  {
    if ( v != m_SegmentationFunction->GetPropagationWeight() )
      {
      this->SetPropagationScaling(v);
      }
    if ( v != m_SegmentationFunction->GetAdvectionWeight() )
      {
      this->SetAdvectionScaling(v);
      }
  }

  /** Set/Get the scaling of the propagation speed.  Setting the FeatureScaling
      parameter overrides any previous values set for PropagationScaling. */
  void SetPropagationScaling(ValueType v)
  {
    if ( Math::NotExactlyEquals(v, m_SegmentationFunction->GetPropagationWeight()) )
      {
      m_SegmentationFunction->SetPropagationWeight(v);
      }
  }

  ValueType GetPropagationScaling() const
  {
    return m_SegmentationFunction->GetPropagationWeight();
  }

  /** Set/Get the scaling of the advection field.  Setting the FeatureScaling
      parameter will override any existing value for AdvectionScaling. */
  void SetAdvectionScaling(ValueType v)
  {
    if ( Math::NotExactlyEquals(v, m_SegmentationFunction->GetAdvectionWeight()) )
      {
      m_SegmentationFunction->SetAdvectionWeight(v);
      }
  }

  ValueType GetAdvectionScaling() const
  {
    return m_SegmentationFunction->GetAdvectionWeight();
  }

  /** Set/Get the scaling of the curvature. Use this parameter to increase the
    *  influence of curvature on the movement of the surface.  Higher
    *  values relative to Advection and Propagation values will give
    *  smoother surfaces. */
  void SetCurvatureScaling(ValueType v)
  {
    if ( Math::NotExactlyEquals(v, m_SegmentationFunction->GetCurvatureWeight()) )
      {
      m_SegmentationFunction->SetCurvatureWeight(v);
      }
  }

  ValueType GetCurvatureScaling() const
  {
    return m_SegmentationFunction->GetCurvatureWeight();
  }

  /** Set the segmentation function.  In general, this should only be called by a subclass
   *  of this object. It is made public to allow itk::Command objects access. */
  virtual void SetSegmentationFunction(SegmentationFunctionType *s);

  virtual SegmentationFunctionType * GetSegmentationFunction()
  { return m_SegmentationFunction; }

  /** Set/Get the maximum number of iterations allowed for the solver.  This
   *  prevents infinite loops if a solution "bounces". */
  void SetMaximumIterations(unsigned int i)
  {
    itkWarningMacro("SetMaximumIterations is deprecated.  Please use SetNumberOfIterations instead.");
    this->SetNumberOfIterations(i);
  }

  unsigned int GetMaximumIterations()
  {
    itkWarningMacro("GetMaximumIterations is deprecated. Please use GetNumberOfIterations instead.");
    return this->GetNumberOfIterations();
  }

  virtual void SetMaximumRMSError(const double) ITK_OVERRIDE
  {
    itkWarningMacro(
      "The current implmentation of this solver does not compute maximum RMS change. The maximum RMS error value will not be set or used.");
  }

#ifdef ITK_USE_CONCEPT_CHECKING
  // Begin concept checking
  itkConceptMacro( OutputHasNumericTraitsCheck,
                   ( Concept::HasNumericTraits< typename TOutputImage::PixelType > ) );
  // End concept checking
#endif

protected:
  virtual ~NarrowBandLevelSetImageFilter() ITK_OVERRIDE {}
  NarrowBandLevelSetImageFilter();

  virtual void PrintSelf(std::ostream & os, Indent indent) const ITK_OVERRIDE;


  /** Overrides parent implementation */
  virtual void InitializeIteration() ITK_OVERRIDE
  {
    Superclass::InitializeIteration();
    // Estimate the progress of the filter
    this->UpdateProgress( (float)( (float)this->GetElapsedIterations()
                                / (float)this->GetNumberOfIterations() ) );
  }

  /** Tells the solver how to reinitialize the narrowband when the reinitialization
    * criterion meets */

  virtual void CreateNarrowBand() ITK_OVERRIDE;

  /** Overridden from ProcessObject to set certain values before starting the
   * finite difference solver and then create an appropriate output */
  void GenerateData() ITK_OVERRIDE;

  /** Flag which sets the inward/outward direction of propagation speed. See
      SetReverseExpansionDirection for more information. */
  bool m_ReverseExpansionDirection;

  /** Reinitialization filters **/
  /** Internal filter types used for reinitialization */
  typedef IsoContourDistanceImageFilter< OutputImageType, OutputImageType >
  IsoFilterType;
  typedef FastChamferDistanceImageFilter< OutputImageType, OutputImageType >
  ChamferFilterType;

  typename IsoFilterType::Pointer m_IsoFilter;

  typename ChamferFilterType::Pointer m_ChamferFilter;

private:
  ITK_DISALLOW_COPY_AND_ASSIGN(NarrowBandLevelSetImageFilter);

  SegmentationFunctionType *m_SegmentationFunction;
};
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkNarrowBandLevelSetImageFilter.hxx"
#endif

#endif