File: itkThresholdSegmentationLevelSetImageFilter.h

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (209 lines) | stat: -rw-r--r-- 7,557 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkThresholdSegmentationLevelSetImageFilter_h
#define itkThresholdSegmentationLevelSetImageFilter_h

#include "itkSegmentationLevelSetImageFilter.h"
#include "itkThresholdSegmentationLevelSetFunction.h"

namespace itk
{
/** \class ThresholdSegmentationLevelSetImageFilter
 *    \brief Segments structures in images based on intensity values.
 *
 *   \par IMPORTANT
 *   The SegmentationLevelSetImageFilter class and the
 *   ThresholdSegmentationLevelSetFunction class contain additional information necessary
 *   to the full understanding of how to use this filter.
 *
 *    \par OVERVIEW
 *    This class is a level set method segmentation filter.  It constructs a
 *    speed function which is close to zero at the upper and lower bounds of an
 *    intensity window, effectively locking the propagating front onto those
 *    edges.  Elsewhere, the front will propagate quickly.
 *
 *    \par INPUTS
 *    This filter requires two inputs.  The first input is a seed
 *    image.  This seed image must contain an isosurface that you want to use as the
 *    seed for your segmentation.  It can be a binary, graylevel, or floating
 *    point image.  The only requirement is that it contain a closed isosurface
 *    that you will identify as the seed by setting the IsosurfaceValue parameter
 *    of the filter.  For a binary image you will want to set your isosurface
 *    value halfway between your on and off values (i.e. for 0's and 1's, use an
 *    isosurface value of 0.5).
 *
 *    \par
 *    The second input is the feature image.  This is the image from which the
 *    speed function will be calculated.  For most applications, this is the
 *    image that you want to segment. The desired isosurface in your seed image
 *    should lie within the region of your feature image that you are trying to
 *    segment. Note that this filter does no preprocessing of the feature image
 *    before thresholding.
 *
 *    \par
 *    See SegmentationLevelSetImageFilter for more information on Inputs.
 *
 *    \par OUTPUTS
 *    The filter outputs a single, scalar, real-valued image.
 *    Positive values in the output image are inside the segmentated region
 *    and negative values in the image are outside of the inside region.  The
 *    zero crossings of the image correspond to the position of the level set
 *    front.
 *
 *   \par
 *   See SparseFieldLevelSetImageFilter and
 *   SegmentationLevelSetImageFilter for more information.
 *
 *   \par PARAMETERS
 *   In addition to parameters described in SegmentationLevelSetImageFilter,
 *   this filter adds the UpperThreshold and LowerThreshold.  See
 *   ThresholdSegmentationLevelSetFunction for a description of how these values
 *   affect the segmentation.
 *
 *   \sa SegmentationLevelSetImageFilter
 *   \sa ThresholdSegmentationLevelSetFunction,
 *   \sa SparseFieldLevelSetImageFilter
 * \ingroup ITKLevelSets
 */
template< typename TInputImage,
          typename TFeatureImage,
          typename TOutputPixelType = float >
class ITK_TEMPLATE_EXPORT ThresholdSegmentationLevelSetImageFilter:
  public SegmentationLevelSetImageFilter< TInputImage, TFeatureImage, TOutputPixelType >
{
public:
  /** Standard class typedefs */
  typedef ThresholdSegmentationLevelSetImageFilter Self;
  typedef  SegmentationLevelSetImageFilter< TInputImage, TFeatureImage, TOutputPixelType >
  Superclass;
  typedef SmartPointer< Self >       Pointer;
  typedef SmartPointer< const Self > ConstPointer;

  /** Inherited typedef from the superclass. */
  typedef typename Superclass::ValueType        ValueType;
  typedef typename Superclass::OutputImageType  OutputImageType;
  typedef typename Superclass::FeatureImageType FeatureImageType;

  /** Type of the segmentation function */
  typedef ThresholdSegmentationLevelSetFunction< OutputImageType,
                                                 FeatureImageType > ThresholdFunctionType;
  typedef typename ThresholdFunctionType::Pointer ThresholdFunctionPointer;

  /** Run-time type information (and related methods). */
  itkTypeMacro(ThresholdSegmentationLevelSetImageFilter, SegmentationLevelSetImageFilter);

  /** Method for creation through the object factory */
  itkNewMacro(Self);

  /** Get/Set the threshold values that will be used to calculate the speed
    function. */
  void SetUpperThreshold(ValueType v)
  {
    this->m_ThresholdFunction->SetUpperThreshold(v);
    this->Modified();
  }

  void SetLowerThreshold(ValueType v)
  {
    this->m_ThresholdFunction->SetLowerThreshold(v);
    this->Modified();
  }

  ValueType GetUpperThreshold() const
  {
    return m_ThresholdFunction->GetUpperThreshold();
  }

  ValueType GetLowerThreshold() const
  {
    return m_ThresholdFunction->GetLowerThreshold();
  }

  /** Set/Get the weight applied to the edge (Laplacian) attractor in the speed
   *  term function. Zero will turn this term off. */
  void SetEdgeWeight(ValueType v)
  {
    this->m_ThresholdFunction->SetEdgeWeight(v);
    this->Modified();
  }

  ValueType GetEdgeWeight() const
  {
    return m_ThresholdFunction->GetEdgeWeight();
  }

  /** Anisotropic diffusion is applied to the FeatureImage before calculating
   * the Laplacian (edge) term. This method sets/gets the number of diffusion
   * iterations. */
  void SetSmoothingIterations(int v)
  {
    this->m_ThresholdFunction->SetSmoothingIterations(v);
    this->Modified();
  }

  int GetSmoothingIterations() const
  {
    return m_ThresholdFunction->GetSmoothingIterations();
  }

  /** Anisotropic diffusion is applied to the FeatureImage before calculating
   * the Laplacian (edge) term. This method sets/gets the diffusion time
   * step. */
  void SetSmoothingTimeStep(ValueType v)
  {
    this->m_ThresholdFunction->SetSmoothingTimeStep(v);
    this->Modified();
  }

  ValueType GetSmoothingTimeStep() const
  {
    return m_ThresholdFunction->GetSmoothingTimeStep();
  }

  /** Anisotropic diffusion is applied to the FeatureImage before calculatign
   * the Laplacian (edge) term. This method sets/gets the smoothing
   * conductance. */
  void SetSmoothingConductance(ValueType v)
  {
    this->m_ThresholdFunction->SetSmoothingConductance(v);
    this->Modified();
  }

  ValueType GetSmoothingConductance() const
  {
    return m_ThresholdFunction->GetSmoothingConductance();
  }

protected:
  ~ThresholdSegmentationLevelSetImageFilter() ITK_OVERRIDE {}
  ThresholdSegmentationLevelSetImageFilter();

  virtual void PrintSelf(std::ostream & os, Indent indent) const ITK_OVERRIDE;

  ITK_DISALLOW_COPY_AND_ASSIGN(ThresholdSegmentationLevelSetImageFilter);

private:
  ThresholdFunctionPointer m_ThresholdFunction;
};
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkThresholdSegmentationLevelSetImageFilter.hxx"
#endif

#endif