File: itkShapePriorSegmentationLevelSetFunctionTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (243 lines) | stat: -rw-r--r-- 7,389 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkShapePriorSegmentationLevelSetFunction.h"
#include "itkSphereSignedDistanceFunction.h"
#include "itkDenseFiniteDifferenceImageFilter.h"

#include "itkBinaryThresholdImageFilter.h"
#include "itkSimilarityIndexImageFilter.h"

/**
 * This module tests the base class ShapePriorSegmentationLevelSetFunction.
 *
 * In particular this test plugs a ShapePriorSegmentationLevelSetFunction object
 * into a simple test filter, derived from DenseFiniteDifferenceImageFilter.
 *
 * Note that this test only tests the shape prior term of the level set
 * evolution. The other terms are excerised in other tests.
 *
 * In this test an initial level set is generated that is perturbed from
 * the shape model used in the level set function. The level set is evolved
 * for a fixed number of iterations. The output level set should be closed to
 * model.
 *
 * The output segmentation is compared to the model using SimilarityIndexImageFilter.
 * The test fails if the overlap is below a certain threshold.
 *
 */
namespace itk {
namespace SPSLSF {

template<typename TImage>
class SimpleTestFilter : public DenseFiniteDifferenceImageFilter< TImage, TImage >
{
public:
  typedef SimpleTestFilter         Self;
  typedef SmartPointer<Self>       Pointer;
  typedef SmartPointer<const Self> ConstPointer;
  itkTypeMacro( SimpleTestFilter, DenseFiniteDifferenceImageFilter );
  itkNewMacro( Self );
  virtual void SetNumberOfIterations( const IdentifierType numberOfIterations ) ITK_OVERRIDE
    {
    if ( this->m_NumberOfIterations != numberOfIterations )
      {
      this->m_NumberOfIterations = numberOfIterations;
      this->Modified();
      }
    }

  typedef ShapePriorSegmentationLevelSetFunction<TImage,TImage> ShapePriorFunctionType;
  ShapePriorFunctionType * GetShapePriorFunction()
    { return m_ShapePriorFunction; }

protected:
  SimpleTestFilter()
    {
    typename ShapePriorFunctionType::Pointer function = ShapePriorFunctionType::New();
    function->SetPropagationWeight( 0.0 );
    function->SetAdvectionWeight( 0.0 );
    function->SetCurvatureWeight( 0.0 );
    function->SetShapePriorWeight( 1.0 );

    typename ShapePriorFunctionType::RadiusType radius;
    radius.Fill( 1 );
    function->Initialize( radius );

    this->SetDifferenceFunction( function );

    m_NumberOfIterations = 0;
    m_ShapePriorFunction = function;
    }

private:
  unsigned int                             m_NumberOfIterations;
  typename ShapePriorFunctionType::Pointer m_ShapePriorFunction;

  virtual bool Halt() ITK_OVERRIDE
    {
    if ( this->GetElapsedIterations() == m_NumberOfIterations ) return true;
    else return false;
    }

};

} // namespace SPSLSF
} // namespace itk

int itkShapePriorSegmentationLevelSetFunctionTest( int, char *[])
{

  typedef float PixelType;
  const unsigned int Dimension = 2;
  typedef itk::Image<PixelType,Dimension> ImageType;

  // create an input level set using the sphere signed distance function
  ImageType::SizeType size;
  size.Fill( 128 );
  ImageType::RegionType region;
  region.SetSize( size );

  ImageType::Pointer input = ImageType::New();
  input->SetRegions( region );
  input->Allocate();

  typedef itk::SphereSignedDistanceFunction<double,Dimension> ShapeFunctionType;
  ShapeFunctionType::Pointer shape = ShapeFunctionType::New();
  shape->Initialize();

  ShapeFunctionType::ParametersType parameters( shape->GetNumberOfParameters() );
  parameters[0] = 10.0;
  parameters[1] = 50.0;
  parameters[2] = 50.0;
  shape->SetParameters( parameters );

  typedef itk::ImageRegionIteratorWithIndex<ImageType> Iterator;
  Iterator iter( input, region );
  iter.GoToBegin();

  while ( !iter.IsAtEnd() )
    {
    ImageType::IndexType index;
    ShapeFunctionType::PointType point;
    index = iter.GetIndex();
    input->TransformIndexToPhysicalPoint( index, point );
    iter.Set( shape->Evaluate( point ) );
    ++iter;
    }

  /**
   * Set up the simple test filter using itk::ShapePriorSegmentationLevelSetFunction.
   */
  typedef itk::SPSLSF::SimpleTestFilter<ImageType> FilterType;
  FilterType::Pointer filter = FilterType::New();

  try
    {
    filter->SetNumberOfIterations( 60 );
    filter->SetInput( input );
    filter->GetShapePriorFunction()->SetFeatureImage( input ); //dummy feature image

    // perturb the parameters
    parameters[0] += 0.5;
    parameters[1] += 10.0;
    parameters[2] += 10.0;

    shape->SetParameters( parameters );
    filter->GetShapePriorFunction()->SetShapeFunction( shape );

    filter->Update();
    }
  catch( itk::ExceptionObject & err )
    {
    std::cout << err << std::endl;
    return EXIT_FAILURE;
    }

  /**
   * Threshold output and verify results.
   */
  typedef itk::Image<unsigned char,Dimension> CharImageType;
  typedef itk::BinaryThresholdImageFilter< ImageType, CharImageType >
    ThresholdFilterType;
  ThresholdFilterType::Pointer thresholder = ThresholdFilterType::New();

  thresholder->SetInput( filter->GetOutput() );
  thresholder->SetLowerThreshold( -1e+10 );
  thresholder->SetUpperThreshold( 0.0 );
  thresholder->SetOutsideValue( 0 );
  thresholder->SetInsideValue( 255 );

  CharImageType::Pointer target = CharImageType::New();
  target->SetRegions( region );
  target->Allocate();

  typedef itk::ImageRegionIteratorWithIndex<CharImageType> CharIterator;
  CharIterator citer( target, region );
  citer.GoToBegin();

  while( !citer.IsAtEnd() )
    {
    CharImageType::IndexType index;
    ShapeFunctionType::PointType point;
    index = citer.GetIndex();
    input->TransformIndexToPhysicalPoint( index, point );
    if ( shape->Evaluate(point) < 0.0 )
      {
      citer.Set( 255 );
      }
    else
      {
      citer.Set( 0 );
      }

    ++citer;
    }


  /**
   * Compute overlap between the true shape and the segmented shape
   */
  typedef itk::SimilarityIndexImageFilter< CharImageType, CharImageType >
    OverlapCalculatorType;
  OverlapCalculatorType::Pointer overlap = OverlapCalculatorType::New();

  overlap->SetInput1( target );
  overlap->SetInput2( thresholder->GetOutput() );
  overlap->Update();

  if ( overlap->GetSimilarityIndex() > 0.90 )
    {
    std::cout << "Overlap of "
      << overlap->GetSimilarityIndex() << " exceed threshold." << std::endl;
    }
  else
    {
    std::cout << "Overlap of "
      << overlap->GetSimilarityIndex() << " is below threshold." << std::endl;
    std::cout << "Test failed." << std::endl;
    return EXIT_FAILURE;
    }

  // Exercise other methods for coverage
  filter->GetDifferenceFunction()->Print( std::cout );

  std::cout << "Test passed. " << std::endl;
  return EXIT_SUCCESS;

}