1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Insight classes
#include "itkMRFImageFilter.h"
#include "itkImageGaussianModelEstimator.h"
#include "itkMahalanobisDistanceMembershipFunction.h"
#include "itkMinimumDecisionRule.h"
//Data definitons
#define IMGWIDTH 6
#define IMGHEIGHT 6
#define NFRAMES 3
#define NUMBANDS 2
#define NDIMENSION 3
#define NUM_CLASSES 3
#define MAX_NUM_ITER 5
#define NEIGHBORHOOD_RAD 1
int itkMRFImageFilterTest(int, char* [] )
{
//------------------------------------------------------
//Create a simple test image with width, height, and
//depth 4 vectors each with each vector having data for
//2 bands.
//------------------------------------------------------
typedef itk::Image<itk::Vector<double,NUMBANDS>,NDIMENSION> VecImageType;
VecImageType::Pointer vecImage = VecImageType::New();
typedef VecImageType::PixelType VecImagePixelType;
VecImageType::SizeType vecImgSize = {{ IMGWIDTH , IMGHEIGHT, NFRAMES }};
VecImageType::IndexType index;
index.Fill(0);
VecImageType::RegionType region;
region.SetSize( vecImgSize );
region.SetIndex( index );
vecImage->SetLargestPossibleRegion( region );
vecImage->SetBufferedRegion( region );
vecImage->Allocate();
enum { VecImageDimension = VecImageType::ImageDimension };
typedef itk::ImageRegionIterator< VecImageType > VecIterator;
VecIterator outIt( vecImage, vecImage->GetBufferedRegion() );
//Set up the vector to store the image data
typedef VecImageType::PixelType DataVector;
DataVector dblVec;
int i,k;
int halfWidth = (int) (vecImgSize[0])/2;
int halfHeight = (int) (vecImgSize[1])/2;
//--------------------------------------------------------------------------
//Manually create and store each vector
//--------------------------------------------------------------------------
//Slice 1
//--------------------------------------------------------------------------
//Row 1-3
for( k=0; k< halfHeight; k++)
{
//Vector no. 1-3
dblVec[0] = 21; dblVec[1] = 19;
for( i=0; i< halfWidth; ++i, ++outIt ) outIt.Set(dblVec);
//Vector no. 4-6
dblVec[0] = 18; dblVec[1] = 14;
for( i=0; i< halfWidth; ++i, ++outIt ) outIt.Set(dblVec);
}
//Row 4-6
for( k=0; k< halfHeight; k++)
{
//Vector no. 1-3
dblVec[0] = 15; dblVec[1] = 11;
for( i=0; i< halfWidth; ++i, ++outIt ) outIt.Set(dblVec);
//Vector no. 4-6
dblVec[0] = 10; dblVec[1] = 16;
for( i=0; i< halfWidth; ++i, ++outIt ) outIt.Set(dblVec);
}
//--------------------------------------------------------------------------
//Slice 2
//--------------------------------------------------------------------------
//Row 1-3
for( k=0; k< halfHeight; k++)
{
//Vector no. 1-3 Row k
dblVec[0] = 14; dblVec[1] = 20;
for( i=0; i< halfWidth; ++i, ++outIt ) outIt.Set(dblVec);
//Vector no. 4-6 Row k
dblVec[0] = 18; dblVec[1] = 22;
for( i=0; i< halfWidth; ++i, ++outIt ) outIt.Set(dblVec);
}
//Row 4-6
for( k=0; k< halfHeight; k++)
{
//Vector no. 1-3 Row k
dblVec[0] = 15; dblVec[1] = 15;
for( i=0; i< halfWidth; ++i, ++outIt ) outIt.Set(dblVec);
//Vector no. 4-6 Row k
dblVec[0] = 12; dblVec[1] = 12;
for( i=0; i< halfWidth; ++i, ++outIt ) outIt.Set(dblVec);
}
//--------------------------------------------------------------------------
//Slice 3
//--------------------------------------------------------------------------
//Row 1-3
for( k=0; k< halfHeight; k++)
{
//Vector no. 1-3 Row k
dblVec[0] = 19; dblVec[1] = 20;
for( i=0; i< halfWidth; ++i, ++outIt ) outIt.Set(dblVec);
//Vector no. 4-6 Row k
dblVec[0] = 19; dblVec[1] = 21;
for( i=0; i< halfWidth; ++i, ++outIt ) outIt.Set(dblVec);
}
//Row 4-6
for( k=0; k< halfHeight; k++)
{
//Vector no. 1-3 Row k
dblVec[0] = 12; dblVec[1] = 12;
for( i=0; i< halfWidth; ++i, ++outIt ) outIt.Set(dblVec);
//Vector no. 4-6 Row k
dblVec[0] = 11; dblVec[1] = 10;
for( i=0; i< halfWidth; ++i, ++outIt ) outIt.Set(dblVec);
}
//---------------------------------------------------------------
//Generate the training data
//---------------------------------------------------------------
typedef itk::Image<unsigned short,NDIMENSION> ClassImageType;
ClassImageType::Pointer classImage = ClassImageType::New();
ClassImageType::SizeType classImgSize = {{ IMGWIDTH , IMGHEIGHT, NFRAMES }};
ClassImageType::IndexType classindex;
classindex.Fill(0);
ClassImageType::RegionType classregion;
classregion.SetSize( classImgSize );
classregion.SetIndex( classindex );
classImage->SetLargestPossibleRegion( classregion );
classImage->SetBufferedRegion( classregion );
classImage->Allocate();
// setup the iterators
typedef ClassImageType::PixelType ClassImagePixelType;
typedef itk::ImageRegionIterator<ClassImageType> ClassImageIterator;
ClassImageIterator classoutIt( classImage, classImage->GetBufferedRegion() );
//--------------------------------------------------------------------------
//Manually create and store each vector
//--------------------------------------------------------------------------
//Slice 1
//--------------------------------------------------------------------------
//Row 1-3
for( k=0; k< halfHeight; k++)
{
//Vector no. 1-3 Row k
for( i=0; i< (halfWidth*2); ++i, ++classoutIt ) classoutIt.Set( 2 );
}
//Row 4-6
for( k=0; k< halfHeight; k++)
{
for( i=0; i< (halfWidth*2); ++i, ++classoutIt ) classoutIt.Set( 1 );
}
//--------------------------------------------------------------------------
//Slice 2
//--------------------------------------------------------------------------
//Row 1-6
for( k=0; k< (halfHeight*2); k++)
{
//Vector no. 1-3 Row k
for( i=0; i< (halfWidth*2); ++i, ++classoutIt ) classoutIt.Set( 0 );
}
//--------------------------------------------------------------------------
//Slice 3
//--------------------------------------------------------------------------
for( k=0; k< halfHeight; k++)
{
//Vector no. 1-3 Row k
for( i=0; i< (halfWidth*2); ++i, ++classoutIt ) classoutIt.Set( 2 );
}
//Row 4-6
for( k=0; k< halfHeight; k++)
{
for( i=0; i< (halfWidth*2); ++i, ++classoutIt ) classoutIt.Set( 1 );
}
//----------------------------------------------------------------------
// Test code for the supervised classifier algorithm
//----------------------------------------------------------------------
//---------------------------------------------------------------------
// Multiband data is now available in the right format
//---------------------------------------------------------------------
//----------------------------------------------------------------------
//Set membership function (Using the statistics objects)
//----------------------------------------------------------------------
namespace stat = itk::Statistics;
typedef stat::MahalanobisDistanceMembershipFunction< VecImagePixelType >
MembershipFunctionType;
typedef MembershipFunctionType::Pointer
MembershipFunctionPointer;
typedef std::vector< MembershipFunctionPointer >
MembershipFunctionPointerVector;
//----------------------------------------------------------------------
// Set the image model estimator (train the class models)
//----------------------------------------------------------------------
typedef itk::ImageGaussianModelEstimator<VecImageType,
MembershipFunctionType, ClassImageType>
ImageGaussianModelEstimatorType;
ImageGaussianModelEstimatorType::Pointer
applyEstimateModel = ImageGaussianModelEstimatorType::New();
applyEstimateModel->SetNumberOfModels(NUM_CLASSES);
applyEstimateModel->SetInputImage(vecImage);
applyEstimateModel->SetTrainingImage(classImage);
//Run the gaussian classifier algorithm
applyEstimateModel->Update();
applyEstimateModel->Print(std::cout);
MembershipFunctionPointerVector membershipFunctions =
applyEstimateModel->GetMembershipFunctions();
//----------------------------------------------------------------------
//Set the decision rule
//----------------------------------------------------------------------
typedef itk::Statistics::MinimumDecisionRule DecisionRuleType;
DecisionRuleType::Pointer
myDecisionRule = DecisionRuleType::New();
//----------------------------------------------------------------------
// Set the classifier to be used and assigne the parameters for the
// supervised classifier algorithm except the input image which is
// grabbed from the MRF application pipeline.
//----------------------------------------------------------------------
//---------------------------------------------------------------------
typedef itk::ImageClassifierBase< VecImageType,
ClassImageType > ClassifierType;
typedef ClassifierType::Pointer ClassifierPointer;
ClassifierPointer myClassifier = ClassifierType::New();
// Set the Classifier parameters
myClassifier->SetNumberOfClasses(NUM_CLASSES);
// Set the decision rule
myClassifier->
SetDecisionRule((itk::Statistics::DecisionRule *) myDecisionRule );
//Add the membership functions
for( unsigned int ii=0; ii<NUM_CLASSES; ii++ )
{
myClassifier->AddMembershipFunction( membershipFunctions[ii] );
}
//----------------------------------------------------------------------
// Set the MRF labeller and populate the parameters
//----------------------------------------------------------------------
//Set the MRF labeller
typedef itk::MRFImageFilter<VecImageType,ClassImageType> MRFImageFilterType;
MRFImageFilterType::Pointer applyMRFImageFilter = MRFImageFilterType::New();
// Set the MRF labeller parameters
applyMRFImageFilter->SetNumberOfClasses( NUM_CLASSES );
applyMRFImageFilter->SetMaximumNumberOfIterations( MAX_NUM_ITER );
applyMRFImageFilter->SetErrorTolerance( 0.10 );
applyMRFImageFilter->SetSmoothingFactor( 1 );
//For setting up a square/cubic or hypercubic neighborhood
applyMRFImageFilter->SetNeighborhoodRadius( NEIGHBORHOOD_RAD );
//For setting up a rectangular/cuboidal or hypercuboidal neighborhood
//itk::Size<NDIMENSION> radius = {{1, 10, 5}};
//applyMRFImageFilter->SetNeighborhoodRadius( radius );
applyMRFImageFilter->SetInput(vecImage);
applyMRFImageFilter->SetClassifier( myClassifier );
//Kick off the MRF labeller function
applyMRFImageFilter->Update();
applyMRFImageFilter->Print(std::cout);
std::cout << "Number of Iterations : " << applyMRFImageFilter->GetNumberOfIterations()
<< std::endl;
std::cout << "Stop condition: (1) Maximum number of iterations (2) Error tolerance: "
<< applyMRFImageFilter->GetStopCondition() << std::endl;
ClassImageType::Pointer outClassImage = applyMRFImageFilter->GetOutput();
//Testing of different parameter access functions in the filter
std::cout << "The number of classes labelled was: " <<
applyMRFImageFilter->GetNumberOfClasses() << std::endl;
std::cout << "The maximum number of iterations were: " <<
applyMRFImageFilter->GetMaximumNumberOfIterations() << std::endl;
std::cout << "The error tolerace threshold was: " <<
applyMRFImageFilter->GetErrorTolerance() << std::endl;
std::cout << "The smoothing MRF parameter used was: " <<
applyMRFImageFilter->GetSmoothingFactor() << std::endl;
std::cout << "The MRF neighborhood weights are: " << std::endl;
//Test other optional access functions to test coverage
std::vector<double> MRFNeighborhoodWeight =
applyMRFImageFilter->GetMRFNeighborhoodWeight();
std::vector<double> testNewNeighborhoodWeight( MRFNeighborhoodWeight.size(), 1);
applyMRFImageFilter->SetMRFNeighborhoodWeight( testNewNeighborhoodWeight );
//Print the mrf labelled image
ClassImageIterator labeloutIt( outClassImage, outClassImage->GetBufferedRegion() );
//---------------------------------------------------------------------
// Set up the neighborhood iterators and the valid neighborhoods
// for iteration
//---------------------------------------------------------------------
//Set up the nighborhood iterators
// Labelled image neighborhood interator typedef
typedef itk::NeighborhoodIterator< ClassImageType >
OutImageNeighborhoodIterator;
typedef OutImageNeighborhoodIterator::RadiusType
OutImageNeighborhoodRadiusType;
typedef
itk::NeighborhoodAlgorithm::ImageBoundaryFacesCalculator< ClassImageType >
OutImageFacesCalculator;
typedef OutImageFacesCalculator::FaceListType OutImageFaceListType;
typedef OutImageFaceListType::iterator OutImageFaceListIterator;
OutImageNeighborhoodRadiusType outImageNeighborhoodRadius;
outImageNeighborhoodRadius.Fill( 1 );
//Define the face list for the input/labelled image
OutImageFacesCalculator outImageFacesCalculator;
OutImageFaceListType outImageFaceList;
//Compute the faces for the neighborhoods in the input/labelled image
outImageFaceList =
outImageFacesCalculator( outClassImage,
outClassImage->GetBufferedRegion(),
outImageNeighborhoodRadius );
//Set up a face list iterator
OutImageFaceListIterator outImageFaceListIter
= outImageFaceList.begin();
//Walk through the entire data set (not visiting the boundaries )
OutImageNeighborhoodIterator
nOutImageNeighborhoodIter( outImageNeighborhoodRadius,
outClassImage,
*outImageFaceListIter );
int sum = 0;
typedef ClassImageType::PixelType ClassImagePixelType;
ClassImagePixelType *outLabel;
//Loop through the labelled region and add the pixel labels
while( !nOutImageNeighborhoodIter.IsAtEnd() )
{
outLabel = nOutImageNeighborhoodIter.GetCenterValue();
sum += ( int ) (*outLabel);
++nOutImageNeighborhoodIter;
}
//Loop through the data set
if( sum == 22 )
{
std::cout<< "MRF labeller Test Passed" << std::endl;
}
else
{
std::cout<< "MRF labeller Test failed. Label sum is " << sum << " and not 22." << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
|