File: itkPCAShapeSignedDistanceFunctionTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (265 lines) | stat: -rw-r--r-- 8,369 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkPCAShapeSignedDistanceFunction.h"

#include "vnl/vnl_sample.h"
#include "itkImageRegionIterator.h"
#include "itkEuler2DTransform.h"


/**
 * This module tests the functionality of the PCAShapeSignedDistanceFunction
 * class.
 *
 * The mean image, principal component images, standard deviations, and
 * and weighting parameters are randomly generated. The signed distance is
 * evaluated at all image points and compared to expected values.
 * The test fails if the evaluated results is not within a certain tolerance
 * of the expected results.
 */
int itkPCAShapeSignedDistanceFunctionTest( int, char *[])
{
  unsigned int i;
  typedef double CoordRep;
  const unsigned int Dimension    = 2;
  const unsigned int ImageWidth   = 3;
  const unsigned int ImageHeight  = 2;
  const unsigned int NumberOfPCs  = 3;


  // define a pca shape function
  typedef itk::PCAShapeSignedDistanceFunction<CoordRep,Dimension> ShapeFunction;
  ShapeFunction::Pointer shape = ShapeFunction::New();
//  shape->DebugOn();
  shape->SetNumberOfPrincipalComponents(NumberOfPCs);


  // set up the transform
  typedef itk::Euler2DTransform<double> transformType;
  transformType::Pointer transform = transformType::New();
  shape->SetTransform(transform);


  // prepare for image creation
  typedef ShapeFunction::ImageType ImageType;

  ImageType::SizeType imageSize = {{ImageWidth, ImageHeight}};

  ImageType::IndexType startIndex;
  startIndex.Fill(0);

  ImageType::RegionType  region;
  region.SetSize(imageSize);
  region.SetIndex(startIndex);


  // set up the random number generator
  vnl_sample_reseed();
  ImageType::PixelType randomPixel;


  // set up the mean image
  ImageType::Pointer meanImage = ImageType::New();
  meanImage->SetRegions(region);
  meanImage->Allocate();

  typedef itk::ImageRegionIterator<ImageType> ImageIterator;
  ImageIterator meanImageIt(meanImage, meanImage->GetBufferedRegion());

  for(meanImageIt.GoToBegin(); !meanImageIt.IsAtEnd(); ++meanImageIt)
    {
    randomPixel = vnl_sample_normal(0, 1);
    meanImageIt.Set(randomPixel);
    }

  shape->SetMeanImage(meanImage);


  // set up the NumberOfPCs principal component images
  ShapeFunction::ImagePointerVector   pcImages(NumberOfPCs);
  typedef std::vector<ImageIterator>  ImageIteratorVector;
  ImageIteratorVector                 pcImageIts(NumberOfPCs);

  for(i=0; i<NumberOfPCs; i++)
    {
    pcImages[i] = ImageType::New();
    pcImages[i]->SetRegions(region);
    pcImages[i]->Allocate();

    pcImageIts[i] = ImageIterator(pcImages[i], pcImages[i]->GetBufferedRegion());

    for(pcImageIts[i].GoToBegin(); !pcImageIts[i].IsAtEnd(); ++pcImageIts[i])
      {
      randomPixel = vnl_sample_normal(0, 1);
      pcImageIts[i].Set(randomPixel);
      }
    }

  shape->SetPrincipalComponentImages(pcImages);


  // set up the standard deviation for each principal component images
  ShapeFunction::ParametersType pcStandardDeviations(NumberOfPCs);

  for(i=0; i<NumberOfPCs; i++)
    { pcStandardDeviations[i] = vnl_sample_normal(0, 1); }

  shape->SetPrincipalComponentStandardDeviations(pcStandardDeviations);


  // set up the parameters
  unsigned int numberOfShapeParameters  = shape->GetNumberOfShapeParameters();
  unsigned int numberOfPoseParameters   = shape->GetNumberOfPoseParameters();
  unsigned int numberOfParameters =
    numberOfShapeParameters  + numberOfPoseParameters;
  ShapeFunction::ParametersType parameters(numberOfParameters);

  for(i=0; i<numberOfParameters; i++)
    { parameters[i] = vnl_sample_normal(0, 1); }

  shape->SetParameters(parameters);


  // we must initialize the function before use
  shape->Initialize();

  // check pca shape calculation
  ShapeFunction::PointType  point;
  ImageType::IndexType      index;
  ShapeFunction::OutputType output;
  ShapeFunction::OutputType expected;

  std::cout << "check results:" << std::endl;
  unsigned int numberOfRotationParameters = Dimension*(Dimension-1)/2;
  unsigned int startIndexOfTranslationParameters =
    numberOfShapeParameters + numberOfRotationParameters;

  ShapeFunction::TransformType::InputPointType p;
  ShapeFunction::TransformType::InputPointType q;

  for(meanImageIt.GoToBegin(); !meanImageIt.IsAtEnd(); ++meanImageIt)
    {
    // from index to physical point
    index = meanImageIt.GetIndex();
    meanImage->TransformIndexToPhysicalPoint(index, point);

    // inverse Euler2DTransform: first translation then rotation
    p[0] =  point[0] - parameters[startIndexOfTranslationParameters];
    p[1] =  point[1] - parameters[startIndexOfTranslationParameters + 1];

    double angle = parameters[numberOfShapeParameters];
    q[0] =  p[0] * std::cos(-angle) - p[1] * std::sin(-angle);
    q[1] =  p[0] * std::sin(-angle) + p[1] * std::cos(-angle);

    // evaluate shape function
    output = shape->Evaluate(q);

    // calculate expected function value
    expected = meanImage->GetPixel(index);
    for(i=0; i<NumberOfPCs; i++)
      {
      expected += pcImages[i]->GetPixel(index) *
      pcStandardDeviations[i] *
      parameters[i];
      }

    // check result
    std::cout << "f(" << point << ") = " << output << std::endl;

    if(itk::Math::abs( output - expected ) > 1e-9)
      {
      std::cout << "But expected value is: " << expected << std::endl;
      return EXIT_FAILURE;
      }
    }

 // Evaluate at a point outside the image domain
 std::cout << "Evaluate at point outside image domain" << std::endl;
 q.Fill( 5.0 );
 output = shape->Evaluate( q );
 std::cout << "f(" << q << ") = " << output << std::endl;

 // Exercise other methods for test coverage
 shape->Print( std::cout );

 std::cout << "NumberOfPrincipalComponents: "
           << shape->GetNumberOfPrincipalComponents() << std::endl;
 std::cout << "MeanImage: "
           << shape->GetMeanImage() << std::endl;
 std::cout << "PrincipalComponentStandardDeviations: "
           << shape->GetPrincipalComponentStandardDeviations() << std::endl;
 std::cout << "Transform: "
           << shape->GetTransform() << std::endl;
 std::cout << "Parameters: "
           << shape->GetParameters() << std::endl;

  // Exercise error testing
  bool pass;

#define TEST_INITIALIZATION_ERROR( ComponentName, badComponent, goodComponent ) \
  shape->Set##ComponentName( badComponent ); \
  try \
    { \
    pass = false; \
    shape->Initialize(); \
    } \
  catch( itk::ExceptionObject& err ) \
    { \
    std::cout << "Caught expected ExceptionObject" << std::endl; \
    std::cout << err << std::endl; \
    pass = true; \
    } \
  shape->Set##ComponentName( goodComponent ); \
  \
  if( !pass ) \
    { \
    std::cout << "Test failed." << std::endl; \
    return EXIT_FAILURE; \
    }

  // ITK_NULLPTR MeanImage
  TEST_INITIALIZATION_ERROR( MeanImage, ITK_NULLPTR, meanImage );

  // Wrong number of PC images
  ShapeFunction::ImagePointerVector   badPCImages;
  badPCImages.resize(1);
  badPCImages[0] = ITK_NULLPTR;

  TEST_INITIALIZATION_ERROR( PrincipalComponentImages, badPCImages, pcImages );

  // A ITK_NULLPTR PC image
  badPCImages = pcImages;
  badPCImages[1] = ITK_NULLPTR;

  TEST_INITIALIZATION_ERROR( PrincipalComponentImages, badPCImages, pcImages );

  // A PC image of the wrong size
  ImageType::SizeType badSize;
  badSize.Fill( 1 );
  ImageType::RegionType badRegion( badSize );
  badPCImages[1] = ImageType::New();
  badPCImages[1]->SetRegions( badRegion );
  badPCImages[1]->Allocate();
  badPCImages[1]->FillBuffer( 0.0 );

  TEST_INITIALIZATION_ERROR( PrincipalComponentImages, badPCImages, pcImages );

  std::cout << "Test passed. " << std::endl;
  return EXIT_SUCCESS;
}