1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkIsolatedWatershedImageFilter_hxx
#define itkIsolatedWatershedImageFilter_hxx
#include "itkIsolatedWatershedImageFilter.h"
#include "itkProgressReporter.h"
#include "itkIterationReporter.h"
namespace itk
{
template< typename TInputImage, typename TOutputImage >
IsolatedWatershedImageFilter< TInputImage, TOutputImage >
::IsolatedWatershedImageFilter()
{
m_Threshold = NumericTraits< InputImagePixelType >::ZeroValue();
m_Seed1.Fill(0);
m_Seed2.Fill(0);
m_ReplaceValue1 = NumericTraits< OutputImagePixelType >::OneValue();
m_ReplaceValue2 = NumericTraits< OutputImagePixelType >::ZeroValue();
m_IsolatedValue = 0.0;
m_IsolatedValueTolerance = 0.001;
m_UpperValueLimit = 1.0;
m_GradientMagnitude = GradientMagnitudeType::New();
m_Watershed = WatershedType::New();
}
template< typename TInputImage, typename TOutputImage >
void
IsolatedWatershedImageFilter< TInputImage, TOutputImage >
::GenerateInputRequestedRegion()
{
Superclass::GenerateInputRequestedRegion();
if ( this->GetInput() )
{
InputImagePointer image =
const_cast< TInputImage * >( this->GetInput() );
image->SetRequestedRegionToLargestPossibleRegion();
}
}
template< typename TInputImage, typename TOutputImage >
void
IsolatedWatershedImageFilter< TInputImage, TOutputImage >
::EnlargeOutputRequestedRegion(DataObject *output)
{
Superclass::EnlargeOutputRequestedRegion(output);
output->SetRequestedRegionToLargestPossibleRegion();
}
template< typename TInputImage, typename TOutputImage >
void
IsolatedWatershedImageFilter< TInputImage, TOutputImage >
::VerifyInputInformation()
{
Superclass::VerifyInputInformation();
const InputImageType *inputImage = this->GetInput();
const InputImageRegionType region = inputImage->GetRequestedRegion();
// Check that the seeds are valid after the input has had its output
// information updated
if ( !region.IsInside(m_Seed1) )
{
itkExceptionMacro("Seed1 is not within the input image!");
}
if ( !region.IsInside(m_Seed2) )
{
itkExceptionMacro("Seed2 is not within the input image!");
}
}
template< typename TInputImage, typename TOutputImage >
void
IsolatedWatershedImageFilter< TInputImage, TOutputImage >
::GenerateData()
{
const InputImageType *inputImage = this->GetInput();
OutputImageType *outputImage = this->GetOutput();
OutputImageRegionType region = outputImage->GetRequestedRegion();
// Set up the pipeline
m_GradientMagnitude->SetInput (inputImage);
// Set up the Watershed
m_Watershed->SetInput( m_GradientMagnitude->GetOutput() );
m_Watershed->SetThreshold( m_Threshold );
m_Watershed->SetLevel( m_UpperValueLimit );
// Allocate the output
this->AllocateOutputs();
double lower = m_Threshold;
double upper = m_UpperValueLimit;
double guess = upper;
const unsigned int maximumIterationsInBinarySearch =
static_cast< unsigned int >(
std::log( ( static_cast< float >( upper ) - static_cast< float >( lower ) )
/ static_cast< float >( m_IsolatedValueTolerance ) ) / std::log(2.0) );
const float progressWeight = 1.0f / static_cast< float >( maximumIterationsInBinarySearch + 2 );
float cumulatedProgress = 0.0f;
IterationReporter iterate(this, 0, 1);
// Do a binary search to find an upper waterlevel that separates the
// two seeds.
while ( lower + m_IsolatedValueTolerance < guess )
{
ProgressReporter progress(this, 0, region.GetNumberOfPixels(), 100, cumulatedProgress, progressWeight);
cumulatedProgress += progressWeight;
m_Watershed->SetLevel (guess);
m_Watershed->Update ();
if ( m_Watershed->GetOutput()->GetPixel(m_Seed1) == m_Watershed->GetOutput()->GetPixel(m_Seed2) )
{
upper = guess;
}
else
{
lower = guess;
}
guess = ( upper + lower ) / 2;
iterate.CompletedStep();
}
// If the watershed basins are not separated or if the upper/lower
// threshold were not valid, then use lower.
if ( m_Watershed->GetOutput()->GetBufferedRegion() != region
|| m_Watershed->GetOutput()->GetPixel(m_Seed1) ==
m_Watershed->GetOutput()->GetPixel(m_Seed2) )
{
m_Watershed->SetLevel (lower);
m_Watershed->Update ();
}
// Now produce an output image with the two seeded basins labeled
ProgressReporter progress(this, 0, region.GetNumberOfPixels(), 100, cumulatedProgress, progressWeight);
ImageRegionIterator< OutputImageType > ot =
ImageRegionIterator< OutputImageType >(outputImage, region);
ImageRegionIterator< typename WatershedType::OutputImageType > it =
ImageRegionIterator< typename WatershedType::OutputImageType >(m_Watershed->GetOutput(), region);
IdentifierType seed1Label = m_Watershed->GetOutput()->GetPixel(m_Seed1);
IdentifierType seed2Label = m_Watershed->GetOutput()->GetPixel(m_Seed2);
IdentifierType value;
it.GoToBegin();
ot.GoToBegin();
while ( !it.IsAtEnd() )
{
value = it.Get();
if ( value == seed1Label )
{
ot.Set(m_ReplaceValue1);
}
else if ( value == seed2Label )
{
ot.Set(m_ReplaceValue2);
}
else
{
ot.Set(NumericTraits< OutputImagePixelType >::ZeroValue());
}
++it;
++ot;
progress.CompletedPixel(); // potential exception thrown here
}
m_IsolatedValue = lower;
iterate.CompletedStep();
}
template< typename TInputImage, typename TOutputImage >
void
IsolatedWatershedImageFilter< TInputImage, TOutputImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
this->Superclass::PrintSelf(os, indent);
os << indent << "Threshold: "
<< m_Threshold
<< std::endl;
os << indent << "UpperValueLimit: "
<< m_UpperValueLimit
<< std::endl;
os << indent << "ReplaceValue1: "
<< static_cast< typename NumericTraits< OutputImagePixelType >::PrintType >( m_ReplaceValue1 )
<< std::endl;
os << indent << "ReplaceValue2: "
<< static_cast< typename NumericTraits< OutputImagePixelType >::PrintType >( m_ReplaceValue2 )
<< std::endl;
os << indent << "Seed1: " << m_Seed1 << std::endl;
os << indent << "Seed2: " << m_Seed2 << std::endl;
os << indent << "IsolatedValue: "
<< m_IsolatedValue
<< std::endl;
os << indent << "IsolatedValueTolerance: "
<< m_IsolatedValueTolerance
<< std::endl;
}
} // end namespace itk
#endif
|