File: itkWatershedSegmenter.hxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (1398 lines) | stat: -rw-r--r-- 47,774 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkWatershedSegmenter_hxx
#define itkWatershedSegmenter_hxx

#include "itkMath.h"
#include "itkWatershedSegmenter.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkImageRegionIterator.h"
#include <stack>
#include <list>

namespace itk
{
namespace watershed
{

/*
  ----------------------------------------------------------------------------
  Algorithm methods
  ----------------------------------------------------------------------------
*/

template< typename TInputImage >
Segmenter< TInputImage >::~Segmenter()
{
  delete[] m_Connectivity.index;
  delete[] m_Connectivity.direction;
}

template< typename TInputImage >
void Segmenter< TInputImage >::GenerateData()
{
  //
  // Allocate all the necessary temporary data structures and variables that
  // will be used in this algorithm.  Also re-initialize some temporary data
  // structures that may have been used in previous updates of this filter.
  //
  unsigned int i;

  this->UpdateProgress(0.0);
  if ( m_DoBoundaryAnalysis == false )
    {
    this->GetSegmentTable()->Clear();
    this->SetCurrentLabel(1);
    }

  flat_region_table_t flatRegions;

  typename InputImageType::Pointer input   = this->GetInputImage();
  typename OutputImageType::Pointer output = this->GetOutputImage();
  typename BoundaryType::Pointer boundary  = this->GetBoundary();

  // ------------------------------------------------------------------------
  //
  // HERE ARE THE ASSUMPTIONS ABOUT REGION SIZES FOR NOW.  WHEN THE PIPELINE
  // FULLY SUPPORTS STREAMING, THESE WILL NEED TO BE CHANGED ACCORDINGLY.
  //
  // 1) All region sizes are equivalent.  There is no distinction among
  // regions.  The region size is assumed to be padded one pixel out along each
  // chunk face unless that face touches an actual data set boundary.
  //
  // 2) The ivar m_LargestPossibleRegion represents the actual size of the data
  // set.  This has to be set by the user since the pipeline sometimes clobbers
  // the actual LargestPossibleRegion (?).
  //
  // -------------------------------------------------------------------------

  //
  // Generate the "face" regions A that constitute our shared boundary with
  // another chunk.  Also determine which face regions B lie on a the true
  // dataset boundary.  The faces corresponding to B will need to be padded
  // out a pixel when we threshold so that we can construct the retaining wall
  // along those faces.
  //
  ImageRegionType regionToProcess       = output->GetRequestedRegion();
  ImageRegionType largestPossibleRegion = this->GetLargestPossibleRegion();
  ImageRegionType thresholdImageRegion  = regionToProcess;
  ImageRegionType thresholdLargestPossibleRegion =
    this->GetLargestPossibleRegion();

  // First we have to find the boundaries and adjust the threshold image size
  typename ImageRegionType::IndexType tidx = thresholdImageRegion.GetIndex();
  typename ImageRegionType::SizeType tsz = thresholdImageRegion.GetSize();
  typename ImageRegionType::IndexType tlidx = thresholdLargestPossibleRegion.GetIndex();
  typename ImageRegionType::SizeType tlsz = thresholdLargestPossibleRegion.GetSize();
  for ( i = 0; i < ImageDimension; ++i )
    {
    ImageRegionType reg;
    typename ImageRegionType::IndexType idx = regionToProcess.GetIndex();
    typename ImageRegionType::SizeType sz  = regionToProcess.GetSize();

    // Set LOW face
    idx[i] = regionToProcess.GetIndex()[i];
    sz[i]  = 1;
    reg.SetSize(sz);
    reg.SetIndex(idx);

    if ( reg.GetIndex()[i] == largestPossibleRegion.GetIndex()[i] )
      {
      // This is facing a true data set boundary
      tsz[i] += 1; // we need to pad our threshold image on this face
      tidx[i] -= 1;
      tlsz[i] += 1; // we need to pad our threshold image on this face
      tlidx[i] -= 1;

      boundary->SetValid(false, i, 0);
      }
    else
      {
      // This is an overlap with another data chunk in the data set
      // Mark this boundary face as valid.
      boundary->SetValid(true, i, 0);
      }

    // Set HIGH face
    idx[i] = ( regionToProcess.GetIndex()[i] + regionToProcess.GetSize()[i] ) - 1;
    reg.SetSize(sz);
    reg.SetIndex(idx);
    if ( ( reg.GetIndex()[i] + reg.GetSize()[i] )
         == ( largestPossibleRegion.GetIndex()[i]
              + largestPossibleRegion.GetSize()[i] ) )
      {
      // This is facing a true data set boundary
      tsz[i] += 1;  // we need to pad our threshold image on this face
      tlsz[i] += 1; // we need to pad our threshold image on this face
      boundary->SetValid(false, i, 1);
      }
    else
      {
      // This is an overlap with another data chunk in the data set
      // Mark this face as valid in the boundary.
      boundary->SetValid(true, i, 1);
      }
    }
  thresholdImageRegion.SetSize(tsz);
  thresholdImageRegion.SetIndex(tidx);
  thresholdLargestPossibleRegion.SetSize(tlsz);
  thresholdLargestPossibleRegion.SetIndex(tlidx);

  // Now create and allocate the threshold image.  We need a single pixel
  // border around the NxM region we are segmenting.  This means that for faces
  // that have no overlap into another chunk, we have to pad the image.
  typename InputImageType::Pointer thresholdImage = InputImageType::New();

  thresholdImage->SetLargestPossibleRegion(thresholdLargestPossibleRegion);
  thresholdImage->SetBufferedRegion(thresholdImageRegion);
  thresholdImage->SetRequestedRegion(thresholdImageRegion);
  thresholdImage->Allocate();

  // Now threshold the image. First we calculate the dynamic range of
  // the input.  Then, the threshold operation clamps the lower
  // intensity values at the prescribed threshold.  If the data is
  // integral, then any intensity at NumericTraits<>::max() is reduced
  // by one intensity value.  This allows the watershed algorithm to
  // build a barrier around the image with values above the maximum
  // intensity value which trivially stop the steepest descent search
  // for local minima without requiring expensive boundary conditions.
  //
  //
  InputPixelType minimum, maximum;
  Self::MinMax(input, regionToProcess, minimum, maximum);
  // cap the maximum in the image so that we can always define a pixel
  // value that is one greater than the maximum value in the image.
  if ( NumericTraits< InputPixelType >::IsInteger
CLANG_PRAGMA_PUSH
CLANG_SUPPRESS_Wfloat_equal
       && maximum == NumericTraits< InputPixelType >::max() )
CLANG_PRAGMA_POP
    {
    maximum -= NumericTraits< InputPixelType >::OneValue();
    }
  // threshold the image.
  Self::Threshold( thresholdImage, input, regionToProcess, regionToProcess,
                   static_cast< InputPixelType >( ( m_Threshold * ( maximum - minimum ) ) + minimum ) );

  //
  // Redefine the regionToProcess in terms of the threshold image.  The region
  // to  process represents all the pixels contained within the 1 pixel padded
  // boundary of the threshold image.
  //
  typename ImageRegionType::SizeType irsz;
  typename ImageRegionType::IndexType iridx;
  for ( i = 0; i < ImageDimension; ++i )
    {
    irsz[i]  = thresholdImageRegion.GetSize()[i] - 2;
    iridx[i] = thresholdImageRegion.GetIndex()[i] + 1;
    }
  regionToProcess.SetIndex(iridx);
  regionToProcess.SetSize(irsz);

  //
  // Initialize the connectivity information that will be used by the
  // segmentation algorithm.
  //
  this->GenerateConnectivity();

  //
  // Store the regionToProcess in the RequestedRegion of the threshold image.
  // We are now completely done with the input image.  The input image memory
  // can be released at this point if need be.
  //
  thresholdImage->SetRequestedRegion(regionToProcess);
  this->ReleaseInputs();

  //
  // At this point we are ready to define the output
  // buffer and allocate memory for the output image.
  //
  output->SetBufferedRegion( thresholdImage->GetBufferedRegion() );
  output->Allocate();
  Self::SetOutputImageValues(output, output->GetBufferedRegion(), Self::NULL_LABEL);

  //
  // Now we can create appropriate boundary regions for analyzing the
  // flow at the boundaries from the requested region of the threshold
  // image.
  //
  typename BoundaryType::IndexType b_idx;
  ImageRegionType reg_b;
  typename ImageRegionType::IndexType idx_b;
  typename ImageRegionType::SizeType sz_b;

  for ( b_idx.first = 0; b_idx.first < ImageDimension; ++b_idx.first )
    {
    for ( b_idx.second = 0; b_idx.second < 2; ++b_idx.second )
      {
      if ( boundary->GetValid(b_idx) == false ) { continue; }
      idx_b = thresholdImage->GetRequestedRegion().GetIndex();
      sz_b = thresholdImage->GetRequestedRegion().GetSize();

      if ( b_idx.second == 1 ) // HIGH face must adjust start index
        {
        idx_b[b_idx.first] += sz_b[b_idx.first] - 1;
        }

      sz_b[b_idx.first] = 1;

      reg_b.SetIndex(idx_b);
      reg_b.SetSize(sz_b);

      boundary->GetFace(b_idx)->SetLargestPossibleRegion(reg_b);
      boundary->GetFace(b_idx)->SetRequestedRegion(reg_b);
      boundary->GetFace(b_idx)->SetBufferedRegion(reg_b);
      boundary->GetFace(b_idx)->Allocate();
      }
    }
  this->UpdateProgress(0.1);

  //
  // Analyze the flow at the boundaries.  This method labels all the boundary
  // pixels that flow out of this chunk (either through gradient descent or
  // flat-region connectivity) and constructs the appropriate Boundary
  // data structures.
  //
  if ( m_DoBoundaryAnalysis == true )
    {
    this->InitializeBoundary();
    this->AnalyzeBoundaryFlow(thresholdImage, flatRegions, maximum
                              + NumericTraits< InputPixelType >::OneValue());
    }

  this->UpdateProgress(0.2);

  //
  // Build a "retaining wall" around the image so that gradient descent
  // analysis can be done without worrying about boundaries.
  //
  // All overlap boundary information will be overwritten, but is no longer
  // needed now.
  //
  this->BuildRetainingWall(thresholdImage,
                           thresholdImage->GetBufferedRegion(),
                           maximum + NumericTraits< InputPixelType >::OneValue());

  //
  // Label all the local minima pixels in the image.  This function also
  // labels flat regions, defined as regions where connected pixels all have
  // the same value.
  //
  this->LabelMinima(thresholdImage, thresholdImage->GetRequestedRegion(),
                    flatRegions, maximum + NumericTraits< InputPixelType >::OneValue());
  this->UpdateProgress(0.3);

  this->GradientDescent( thresholdImage, thresholdImage->GetRequestedRegion() );
  this->UpdateProgress(0.4);

  this->DescendFlatRegions( flatRegions, thresholdImage->GetRequestedRegion() );
  this->UpdateProgress(0.5);

  this->UpdateSegmentTable( thresholdImage, thresholdImage->GetRequestedRegion() );
  this->UpdateProgress(0.6);

  if ( m_DoBoundaryAnalysis == true )
          {  this->CollectBoundaryInformation(flatRegions); }
  this->UpdateProgress(0.7);

  if ( m_SortEdgeLists == true )
          {  this->GetSegmentTable()->SortEdgeLists(); }
  this->UpdateProgress(0.8);

  this->GetSegmentTable()->SetMaximumDepth(maximum - minimum);
  this->UpdateProgress(1.0);
}

template< typename TInputImage >
void Segmenter< TInputImage >
::CollectBoundaryInformation(flat_region_table_t & flatRegions)
{
  typename OutputImageType::Pointer output = this->GetOutputImage();
  typename BoundaryType::Pointer boundary  = this->GetBoundary();

  ImageRegionIterator< typename BoundaryType::face_t > faceIt;
  ImageRegionIterator< OutputImageType >                   labelIt;

  typename BoundaryType::face_t::Pointer face;
  typename BoundaryType::flat_hash_t           * flats;
  typename BoundaryType::flat_hash_t::iterator flats_it;
  typename BoundaryType::flat_region_t flr;
  typename flat_region_table_t::iterator flrt_it;

  typename BoundaryType::IndexType idx;
  ImageRegionType region;

  for ( idx.first = 0; idx.first < ImageDimension; ( idx.first )++ )
    {
    for ( idx.second = 0; idx.second < 2; ( idx.second )++ )
      {
      if ( boundary->GetValid(idx) == false ) { continue; }

      face  = boundary->GetFace(idx);
      flats = boundary->GetFlatHash(idx);
      region = face->GetRequestedRegion();

      // Grab all the labels of the boundary pixels.
      faceIt = ImageRegionIterator< typename BoundaryType::face_t >(face,
                                                                        region);
      labelIt = ImageRegionIterator< OutputImageType >(output, region);
      faceIt.GoToBegin();
      labelIt.GoToBegin();
      while ( !faceIt.IsAtEnd() )
        {
        faceIt.Value(). label = labelIt.Get();

        // Is this a flat region that flows out?
        flrt_it = flatRegions.find( labelIt.Get() );
        if ( faceIt.Get().flow != NULL_FLOW
             && flrt_it != flatRegions.end() )
          {
          // Have we already entered this
          // flat region into the boundary?
          flats_it = flats->find( labelIt.Get() );
          if ( flats_it == flats->end() )  // NO
            {
            flr.bounds_min = ( *flrt_it ).second.bounds_min;
            flr.min_label  = *( ( *flrt_it ).second.min_label_ptr );
            flr.value      = ( *flrt_it ).second.value;
            flr.offset_list.push_back(
              face->ComputeOffset( faceIt.GetIndex() ) );
            flats->insert(
              BoundaryFlatHashValueType(labelIt.Get(), flr) );
            flr.offset_list.clear();
            }
          else // YES
            {
            ( *flats_it ).second.offset_list.push_back( face->ComputeOffset( faceIt.GetIndex() ) );
            }
          }

        ++faceIt;
        ++labelIt;
        }
      }
    }
}

template< typename TInputImage >
void Segmenter< TInputImage >
::InitializeBoundary()
{
  ImageRegionIterator< typename BoundaryType::face_t > faceIt;
  typename BoundaryType::face_t::Pointer face;
  typename BoundaryType::face_pixel_t fps;
  BoundaryIndexType idx;

  fps.flow  = NULL_FLOW;
  fps.label = NULL_LABEL;

  for ( idx.first = 0; idx.first < ImageDimension; ++( idx.first ) )
    {
    for ( idx.second = 0; idx.second < 2; ++( idx.second ) )
      {
      if ( this->GetBoundary()->GetValid(idx) == false ) { continue; }
      this->GetBoundary()->GetFlatHash(idx)->clear();
      face = this->GetBoundary()->GetFace(idx);
      faceIt = ImageRegionIterator< typename BoundaryType::face_t >
                 ( face, face->GetBufferedRegion() );
      for ( faceIt.GoToBegin(); !faceIt.IsAtEnd(); ++faceIt )
        {
        faceIt.Set(fps);
        }
      }
    }
}

template< typename TInputImage >
void Segmenter< TInputImage >
::AnalyzeBoundaryFlow(InputImageTypePointer thresholdImage,
                      flat_region_table_t & flatRegions,
                      InputPixelType max)
{
  //
  // NOTE: For ease of initial implementation, this method does
  // not support arbitrary connectivity across boundaries (yet). 10-8-01 jc
  //
  unsigned int nCenter, i, nPos, cPos;
  bool         isSteepest;

  ConstNeighborhoodIterator< InputImageType >              searchIt;
  NeighborhoodIterator< OutputImageType >                  labelIt;
  ImageRegionIterator< typename BoundaryType::face_t > faceIt;

  BoundaryIndexType idx;
  ImageRegionType   region;
  typename ConstNeighborhoodIterator< InputImageType >::RadiusType rad;

  typename BoundaryType::face_pixel_t fps;
  flat_region_t tempFlatRegion;

  typename OutputImageType::Pointer output   = this->GetOutputImage();
  typename BoundaryType::Pointer boundary = this->GetBoundary();

  for ( i = 0; i < ImageDimension; ++i )
    {
    rad[i] = 1;
    }
  fps.label = NULL_LABEL;

  EquivalencyTable::Pointer eqTable = EquivalencyTable::New();

  // Process each boundary region.
  for ( idx.first = 0; idx.first < ImageDimension; ++( idx.first ) )
    {
    for ( idx.second = 0; idx.second < 2; ++( idx.second ) )
      {
      // Skip irrelevant boundaries
      if ( boundary->GetValid(idx) == false ) { continue; }

      typename BoundaryType::face_t::Pointer face = boundary->GetFace(idx);
      region = face->GetRequestedRegion();

      searchIt =
        ConstNeighborhoodIterator< InputImageType >(rad, thresholdImage, region);
      labelIt = NeighborhoodIterator< OutputImageType >(rad, output, region);
      faceIt  = ImageRegionIterator< typename BoundaryType::face_t >(face, region);

      nCenter = searchIt.Size() / 2;
      searchIt.GoToBegin();
      labelIt.GoToBegin();

      if ( ( idx ).second == 0 )
        {
        // Low face
        cPos = m_Connectivity.index[( idx ).first];
        }
      else
        {
        // High face
        cPos = m_Connectivity.index[( ImageDimension - 1 )
                                    + ( ImageDimension - ( idx ).first )];
        }

      while ( !searchIt.IsAtEnd() )
        {
        // Is this a flat connection?
        if ( Math::AlmostEquals( searchIt.GetPixel(nCenter), searchIt.GetPixel(cPos) ) )
          {
          // Fill in the boundary flow information.
          // Labels will be collected later.
          fps.flow   = static_cast< short >( cPos );
          faceIt.Set(fps);

          // Are we touching flat regions
          // that have already been labeled?
          bool _labeled    = false;
          bool _connected  = false;
          for ( i = 0; i < m_Connectivity.size; i++ )
            {
            nPos = m_Connectivity.index[i];
            if (   Math::AlmostEquals( searchIt.GetPixel(nCenter), searchIt.GetPixel(nPos) )
                   && labelIt.GetPixel(nPos) != Self::NULL_LABEL
                   && labelIt.GetPixel(nPos) != labelIt.GetPixel(nCenter)
                   )
              {
              _connected = true;
              if ( _labeled == false )
                {
                labelIt.SetPixel( nCenter,
                                  labelIt.GetPixel(nPos) );
                _labeled = true;
                }
              else
                {
                eqTable->Add( labelIt.GetPixel(nCenter), labelIt.GetPixel(nPos) );
                }
              }
            }
          if ( _connected == false ) // Add a new flat region.
            {
            labelIt.SetPixel(nCenter, m_CurrentLabel);

            // Add a flat region to the (global) flat region table
            tempFlatRegion.bounds_min    = max;
            tempFlatRegion.min_label_ptr = output->GetBufferPointer()
                                           + output->ComputeOffset( labelIt.GetIndex() );
            tempFlatRegion.value         = searchIt.GetPixel(nCenter);
            tempFlatRegion.is_on_boundary = true;
            flatRegions[m_CurrentLabel]  = tempFlatRegion;

            m_CurrentLabel++;
            }
          }
        else  // Is cPos the path of steepest descent?
          {
          if ( searchIt.GetPixel(cPos) < searchIt.GetPixel(nCenter) )
            {
            isSteepest = true;
            for ( i = 0; i < m_Connectivity.size; i++ )
              {
              nPos = m_Connectivity.index[i];
              if ( searchIt.GetPixel(nPos) < searchIt.GetPixel(cPos) )
                {
                isSteepest = false;
                break;
                }
              }
            }
          else { isSteepest = false; }

          if ( isSteepest == true )
            {
            // Label this pixel. It will be safely treated as a local
            // minimum by the rest of the segmentation algorithm.
            labelIt.SetPixel(nCenter, m_CurrentLabel);

            // Add the connectivity information
            // to the boundary data structure.
            fps.flow  = static_cast< short >( cPos );
            faceIt.Set(fps);

            // Since we've labeled this pixel, we need to check to
            // make sure this is not also a flat region.  If it is,
            // then it must be entered into the flat region table
            // or we could have problems later on.
            for ( i = 0; i < m_Connectivity.size; i++ )
              {
              nPos = m_Connectivity.index[i];
              if ( Math::AlmostEquals( searchIt.GetPixel(nPos),
                   searchIt.GetPixel(nCenter) ) )
                {
                tempFlatRegion.bounds_min = max;
                tempFlatRegion.min_label_ptr =
                  output->GetBufferPointer()
                  + output->ComputeOffset( labelIt.GetIndex() );
                tempFlatRegion.value =
                  searchIt.GetPixel(nCenter);
                tempFlatRegion.is_on_boundary = false;
                flatRegions[m_CurrentLabel] = tempFlatRegion;
                break;
                }
              }
            m_CurrentLabel++;
            }
          }

        ++searchIt;
        ++labelIt;
        ++faceIt;
        }
      }
    }

  eqTable->Flatten();

  // Now relabel any equivalent regions in the boundaries.
  for ( idx.first = 0; idx.first < ImageDimension; ++( idx.first ) )
    {
    for ( idx.second = 0; idx.second < 2; ++( idx.second ) )
      {
      // Skip irrelevant boundaries
      if ( boundary->GetValid(idx) == false ) { continue; }

      typename BoundaryType::face_t::Pointer face = boundary->GetFace(idx);
      region = face->GetRequestedRegion();

      Self::RelabelImage(output, region, eqTable);
      }
    }

  // Merge the flat regions in the table
  Self::MergeFlatRegions(flatRegions, eqTable);
}

template< typename TInputImage >
void Segmenter< TInputImage >
::GenerateConnectivity()
{
  unsigned int i, j, nSize, nCenter, stride;
  int          d;

  //
  // Creates city-block style connectivity.  4-Neighbors in 2D.  6-Neighbors in
  // 3D, etc...  Order of creation MUST be lowest index to highest index in the
  // neighborhood.  I.e. for 4 connectivity,
  //
  //     * 1 *
  //     2 * 3
  //     * 4 *
  //
  // Algorithms assume this order to the connectivity.
  //
  typename ConstNeighborhoodIterator< InputImageType >::RadiusType rad;
  for ( i = 0; i < ImageDimension; ++i )
    {
    rad[i] = 1;
    }
  ConstNeighborhoodIterator< InputImageType > it( rad, this->GetInputImage(),
                                                  this->GetInputImage()->GetRequestedRegion() );
  nSize   = it.Size();
  nCenter = nSize >> 1;

  for ( i = 0; i < m_Connectivity.size; i++ ) // initialize move list
    {
    for ( j = 0; j < ImageDimension; j++ )
      {
      m_Connectivity.direction[i][j] = 0;
      }
    }
  i = 0;
  for ( d = ImageDimension - 1; d >= 0; d-- )
    {
    stride = it.GetStride(d);
    m_Connectivity.index[i] = nCenter - stride;
    m_Connectivity.direction[i][d] = -1;
    i++;
    }
  for ( d = 0; d < static_cast< int >( ImageDimension ); d++ )
    {
    stride = it.GetStride(d);
    m_Connectivity.index[i] = nCenter + stride;
    m_Connectivity.direction[i][d] = 1;
    i++;
    }
}

template< typename TInputImage >
void Segmenter< TInputImage >
::LabelMinima(InputImageTypePointer img, ImageRegionType region,
              typename Self::flat_region_table_t & flatRegions, InputPixelType Max)
{
  unsigned int   i, nSize, nCenter, nPos = 0;
  bool           foundSinglePixelMinimum, foundFlatRegion;
  InputPixelType maxValue = Max;

  flat_region_t tempFlatRegion;

  typename flat_region_table_t::iterator flatPtr;
  InputPixelType            currentValue;
  EquivalencyTable::Pointer equivalentLabels = EquivalencyTable::New();

  typename OutputImageType::Pointer output = this->GetOutputImage();

  // Set up the iterators.
  typename ConstNeighborhoodIterator< InputImageType >::RadiusType rad;
  for ( i = 0; i < ImageDimension; ++i )
    {
    rad[i] = 1;
    }
  ConstNeighborhoodIterator< InputImageType > searchIt(rad, img, region);
  NeighborhoodIterator< OutputImageType >     labelIt(rad, output, region);
  nSize   = searchIt.Size();
  nCenter = nSize >> 1;

  // Sweep through the images.  Label all local minima
  // and record information for all the flat regions.
  for ( searchIt.GoToBegin(), labelIt.GoToBegin();
        !searchIt.IsAtEnd(); ++searchIt, ++labelIt )
    {
    foundSinglePixelMinimum = true;
    foundFlatRegion = false;

    // If this pixel has been labeled already,
    // skip directly to the next iteration.
    if ( labelIt.GetPixel(nCenter) != Self::NULL_LABEL ) { continue; }

    // Compare current pixel value with its neighbors.
    currentValue = searchIt.GetPixel(nCenter);

    for ( i = 0; i < m_Connectivity.size; ++i )
      {
      nPos = m_Connectivity.index[i];
      if ( Math::AlmostEquals( currentValue, searchIt.GetPixel(nPos) ) )
        {
        foundFlatRegion  = true;
        break;
        }
      else if ( currentValue > searchIt.GetPixel(nPos) )
        {
        foundSinglePixelMinimum = false;
        }
      }

    if ( foundFlatRegion )
      {
      if ( labelIt.GetPixel(nPos) != Self::NULL_LABEL ) // If the flat region is
                                                        // already
        {                                               // labeled, label this
                                                        // to match.
        labelIt.SetPixel( nCenter, labelIt.GetPixel(nPos) );
        }
      else // Add a new flat region to the table.
        {  // Initialize its contents.
        labelIt.SetPixel(nCenter,  m_CurrentLabel);
        nPos = m_Connectivity.index[0];

        tempFlatRegion.bounds_min        = maxValue;
        tempFlatRegion.min_label_ptr     = labelIt[nPos];
        tempFlatRegion.value             = currentValue;
        flatRegions[m_CurrentLabel]      = tempFlatRegion;
        m_CurrentLabel = m_CurrentLabel + 1;
        }

      // While we're at it, check to see if we have just linked two flat
      // regions with the same height value.  Save that info for later.
      for ( i++; i < m_Connectivity.size; ++i )
        {
        nPos = m_Connectivity.index[i];
        if (   Math::AlmostEquals( searchIt.GetPixel(nCenter), searchIt.GetPixel(nPos) )
               && labelIt.GetPixel(nPos) != Self::NULL_LABEL
               && labelIt.GetPixel(nPos) != labelIt.GetPixel(nCenter)
               )
          {
          equivalentLabels->Add( labelIt.GetPixel(nCenter),
                                 labelIt.GetPixel(nPos) );
          }
        }
      }
    else if ( foundSinglePixelMinimum )
      {
      labelIt.SetPixel(nCenter,  m_CurrentLabel);
      m_CurrentLabel = m_CurrentLabel + 1;
      }
    }

  // Merge the flat regions that we identified as connected components.
  Self::MergeFlatRegions(flatRegions, equivalentLabels);

  // Relabel the image with the merged regions.
  Self::RelabelImage(output, region, equivalentLabels);

  equivalentLabels->Clear();

  // Now make another pass to establish the
  // boundary values for the flat regions.
  for ( searchIt.GoToBegin(), labelIt.GoToBegin();
        !searchIt.IsAtEnd(); ++searchIt, ++labelIt )
    {
    flatPtr = flatRegions.find( labelIt.GetPixel(nCenter) );
    if ( flatPtr != flatRegions.end() ) // If we are in a flat region
      {                                 // Search the connectivity neighborhood
                                        // for lesser boundary pixels.
      for ( i = 0; i < m_Connectivity.size; ++i )
        {
        nPos = m_Connectivity.index[i];

        if  ( labelIt.GetPixel(nPos) != labelIt.GetPixel(nCenter)
              && searchIt.GetPixel(nPos) < ( *flatPtr ).second.bounds_min )
          { // If this is a boundary pixel && has a lesser value than
            // the currently recorded value...
          ( *flatPtr ).second.bounds_min = searchIt.GetPixel(nPos);
          ( *flatPtr ).second.min_label_ptr = labelIt[nPos];
          }
        if ( Math::AlmostEquals( searchIt.GetPixel(nCenter), searchIt.GetPixel(nPos) ) )
          {
          if ( labelIt.GetPixel(nPos) != NULL_LABEL )
            {
            // Pick up any equivalencies we missed before.
            equivalentLabels->Add( labelIt.GetPixel(nCenter),
                                   labelIt.GetPixel(nPos) );
            }
          // If the following is encountered, it means that there is a
          // logic flaw in the first pass of this algorithm where flat
          // regions are initially detected and linked.
#ifndef NDEBUG
          else { itkDebugMacro("An unexpected but non-fatal error has occurred."); }
#endif
          }
        }
      }
    }

  // Merge the flat regions that we identified as connected components.
  Self::MergeFlatRegions(flatRegions, equivalentLabels);

  // Relabel the image with the merged regions.
  Self::RelabelImage(output, region, equivalentLabels);
}

template< typename TInputImage >
void Segmenter< TInputImage >
::GradientDescent(InputImageTypePointer img,
                  ImageRegionType region)
{
  typename OutputImageType::Pointer output = this->GetOutputImage();

  InputPixelType minVal;
  unsigned int   i, nPos;
  typename InputImageType::OffsetType moveIndex;
  IdentifierType                 newLabel;
  std::stack< IdentifierType * > updateStack;

  //
  // Set up our iterators.
  //
  typename ConstNeighborhoodIterator< InputImageType >::RadiusType rad;
  typename NeighborhoodIterator< OutputImageType >::RadiusType zeroRad;
  for ( i = 0; i < ImageDimension; ++i )
    {
    rad[i] = 1;
    zeroRad[i] = 0;
    }
  ConstNeighborhoodIterator< InputImageType >
  valueIt(rad, img, region);
  NeighborhoodIterator< OutputImageType >
                                         labelIt(zeroRad, output, region);
  ImageRegionIterator< OutputImageType > it(output, region);

  //
  // Sweep through the image and trace all unlabeled
  // pixels to a labeled region
  //
  for ( it.GoToBegin(); !it.IsAtEnd(); ++it )
    {
    if ( it.Get() == NULL_LABEL )
      {
      valueIt.SetLocation( it.GetIndex() );
      labelIt.SetLocation( it.GetIndex() );
      newLabel = NULL_LABEL;               // Follow the path of steep-
      while ( newLabel == NULL_LABEL )     // est descent until a label
        {                                  // is found.
        updateStack.push( labelIt.GetCenterPointer() );
        minVal = valueIt.GetPixel(m_Connectivity.index[0]);
        moveIndex = m_Connectivity.direction[0];
        for ( unsigned int ii = 1; ii < m_Connectivity.size; ++ii )
          {
          nPos = m_Connectivity.index[ii];
          if ( valueIt.GetPixel(nPos) < minVal )
            {
            minVal = valueIt.GetPixel(nPos);
            moveIndex = m_Connectivity.direction[ii];
            }
          }
        valueIt += moveIndex;
        labelIt += moveIndex;
        newLabel = labelIt.GetPixel(0);
        }

      while ( !updateStack.empty() ) // Update all the pixels we've traversed
        {
        *( updateStack.top() ) = newLabel;
        updateStack.pop();
        }
      }
    }
}

template< typename TInputImage >
void Segmenter< TInputImage >
::DescendFlatRegions(flat_region_table_t & flatRegionTable,
                     ImageRegionType imageRegion)
{
  typename OutputImageType::Pointer output = this->GetOutputImage();
  // Assumes all pixels are labeled in the image.  Steps through the flat
  // regions and equates each one with the label at its lowest boundary
  // point. Flat basins are preserved as their own regions. The output image is
  // relabeled to reflect these equivalencies.
  EquivalencyTable::Pointer equivalentLabels = EquivalencyTable::New();

  for ( typename flat_region_table_t::const_iterator region = flatRegionTable.begin();
        region != flatRegionTable.end(); ++region )
    {
    if ( ( ( *region ).second.bounds_min < ( *region ).second.value )
         && ( !( *region ).second.is_on_boundary ) )
      {
      equivalentLabels->Add( ( *region ).first, *( ( *region ).second.min_label_ptr ) );
      }
    }

  equivalentLabels->Flatten();
  Self::RelabelImage(output, imageRegion, equivalentLabels);
}

template< typename TInputImage >
void Segmenter< TInputImage >
::UpdateSegmentTable(InputImageTypePointer input, ImageRegionType region)
{
  edge_table_hash_t edgeHash;
  edge_table_t      tempEdgeTable;

  typename edge_table_hash_t::iterator edge_table_entry_ptr;
  typename edge_table_t::iterator edge_ptr;

  unsigned int i, nPos;
  typename NeighborhoodIterator< OutputImageType >::RadiusType hoodRadius;
  typename SegmentTableType::segment_t * segment_ptr;
  typename SegmentTableType::segment_t temp_segment;
  IdentifierType segment_label;

  InputPixelType lowest_edge;

  // Grab the data we need.
  typename OutputImageType::Pointer output    = this->GetOutputImage();
  typename SegmentTableType::Pointer segments = this->GetSegmentTable();

  // Set up some iterators.
  for ( i = 0; i < ImageDimension; i++ )
    {
    hoodRadius[i] = 1;
    }
  ConstNeighborhoodIterator< InputImageType > searchIt(hoodRadius, input, region);
  NeighborhoodIterator< OutputImageType >     labelIt(hoodRadius, output, region);

  IdentifierType hoodCenter = searchIt.Size() >> 1;

  for ( searchIt.GoToBegin(), labelIt.GoToBegin(); !searchIt.IsAtEnd();
        ++searchIt, ++labelIt )
    {
    segment_label = labelIt.GetPixel(hoodCenter);

    // Find the segment corresponding to this label
    // and update its minimum value if necessary.
    segment_ptr = segments->Lookup(segment_label);
    edge_table_entry_ptr = edgeHash.find(segment_label);
    if ( segment_ptr == ITK_NULLPTR ) // This segment not yet identified.
      {                     // So add it to the table.
      temp_segment.min = searchIt.GetPixel(hoodCenter);
      segments->Add(segment_label, temp_segment);
      typedef typename edge_table_hash_t::value_type ValueType;
      edgeHash.insert( ValueType(segment_label,
                                 tempEdgeTable) );

      edge_table_entry_ptr = edgeHash.find(segment_label);
      }
    else if ( searchIt.GetPixel(hoodCenter) < segment_ptr->min )
      {
      segment_ptr->min = searchIt.GetPixel(hoodCenter);
      }

    // Look up each neighboring segment in this segment's edge table.
    // If an edge exists, compare (and reset) the minimum edge value.
    // Note that edges are located *between* two adjacent pixels and
    // the value is taken to be the maximum of the two adjacent pixel
    // values.
    for ( i = 0; i < m_Connectivity.size; ++i )
      {
      nPos = m_Connectivity.index[i];
      if ( labelIt.GetPixel(nPos) != segment_label
           && labelIt.GetPixel(nPos) != NULL_LABEL )
        {
        if ( searchIt.GetPixel(nPos) < searchIt.GetPixel(hoodCenter) )
          {
          lowest_edge = searchIt.GetPixel(hoodCenter); // We want the
          }
        else
          {
          lowest_edge = searchIt.GetPixel(nPos);       // max of the
          }
        // adjacent pixels

        edge_ptr = ( *edge_table_entry_ptr ).second.find( labelIt.GetPixel(nPos) );
        if ( edge_ptr == ( *edge_table_entry_ptr ).second.end() )
          {     // This edge has not been identified yet.
          typedef typename edge_table_t::value_type ValueType;
          ( *edge_table_entry_ptr ).second.insert(
            ValueType(labelIt.GetPixel(nPos), lowest_edge) );
          }
        else if ( lowest_edge < ( *edge_ptr ).second )
          {
          ( *edge_ptr ).second = lowest_edge;
          }
        }
      }
    }

  //
  // Copy all of the edge tables into the edge lists of the
  // segment table.
  //
  IdentifierType listsz;
  typename SegmentTableType::edge_list_t::iterator list_ptr;
  for ( edge_table_entry_ptr = edgeHash.begin();
        edge_table_entry_ptr != edgeHash.end();
        edge_table_entry_ptr++ )
    {
    // Lookup the corresponding segment entry
    segment_ptr = segments->Lookup( ( *edge_table_entry_ptr ).first );
    if ( segment_ptr == ITK_NULLPTR )
      {
      itkGenericExceptionMacro (<< "UpdateSegmentTable:: An unexpected and fatal error has occurred.");
      }

    // Copy into the segment list
    listsz = static_cast< IdentifierType >( ( *edge_table_entry_ptr ).second.size() );
    segment_ptr->edge_list.resize(listsz);
    edge_ptr = ( *edge_table_entry_ptr ).second.begin();
    list_ptr = segment_ptr->edge_list.begin();
    while ( edge_ptr != ( *edge_table_entry_ptr ).second.end() )
      {
      list_ptr->label = ( *edge_ptr ).first;
      list_ptr->height = ( *edge_ptr ).second;
      edge_ptr++;
      list_ptr++;
      }

    // Clean up memory as we go
    ( *edge_table_entry_ptr ).second.clear();
    }
}

template< typename TInputImage >
void Segmenter< TInputImage >
::BuildRetainingWall(InputImageTypePointer img,
                     ImageRegionType region,
                     InputPixelType value)
{
  unsigned int i;

  typename ImageRegionType::SizeType sz;
  typename ImageRegionType::IndexType idx;
  ImageRegionType reg;

  // Loop through the dimensions and populate the LOW and HIGH faces regions.
  for ( i = 0; i < ImageDimension; ++i )
    {
    idx = region.GetIndex();       // LOW face
    sz  = region.GetSize();
    sz[i] = 1;
    reg.SetIndex(idx);
    reg.SetSize(sz);
    Segmenter::SetInputImageValues(img, reg, value);
    idx[i] = region.GetSize()[i] + region.GetIndex()[i] - 1;  // HIGH face
    reg.SetIndex(idx);
    Segmenter::SetInputImageValues(img, reg, value);
    }
}

/*
  ----------------------------------------------------------------------------
  Algorithm helper methods and debugging methods
  ----------------------------------------------------------------------------
*/
template< typename TInputImage >
void Segmenter< TInputImage >
::SetInputImageValues(InputImageTypePointer img,
                      ImageRegionType region,
                      InputPixelType value)
{
  ImageRegionIterator< InputImageType > it(img, region);
  it.GoToBegin();
  while ( !it.IsAtEnd() )
    {
    it.Set(value);
    ++it;
    }
}

template< typename TInputImage >
void Segmenter< TInputImage >
::SetOutputImageValues(OutputImageTypePointer img,
                       ImageRegionType region,
                       IdentifierType value)
{
  ImageRegionIterator< OutputImageType > it(img, region);
  it.GoToBegin();
  while ( !it.IsAtEnd() )
    {
    it.Set(value);
    ++it;
    }
}

template< typename TInputImage >
void Segmenter< TInputImage >
::MinMax(InputImageTypePointer img, ImageRegionType region,
         InputPixelType & min, InputPixelType & max)
{
  ImageRegionIterator< InputImageType > it(img, region);
  it.GoToBegin();
  min = it.Value();
  max = it.Value();
  while ( !it.IsAtEnd() )
    {
    if ( it.Get() > max ) { max = it.Get(); }
    if ( it.Get() < min ) { min = it.Get(); }
    ++it;
    }
}

template< typename TInputImage >
void Segmenter< TInputImage >
::MergeFlatRegions(flat_region_table_t & regions,
                   EquivalencyTable::Pointer eqTable)
{
  // Note that the labels must have no interdependencies.  That is,
  // every key must map to a value that is not itself a key in the
  // table. This means that you must always merge label->first with
  // label->second (a to b). EquivalencyTable can be converted to this
  // format with its Flatten() method.
  eqTable->Flatten();

  typename flat_region_table_t::iterator a, b;
  for ( EquivalencyTable::ConstIterator it = eqTable->Begin();
        it != eqTable->End(); ++it )
    {
    if ( ( ( a = regions.find( ( *it ).first ) ) == regions.end() )
         || ( ( b = regions.find( ( *it ).second ) ) == regions.end() ) )
      {
      itkGenericExceptionMacro (<< "MergeFlatRegions:: An unexpected and fatal error has occurred.");
      }

    if ( ( *a ).second.bounds_min < ( *b ).second.bounds_min )
      {
      ( *b ).second.bounds_min = ( *a ).second.bounds_min;
      ( *b ).second.min_label_ptr = ( *a ).second.min_label_ptr;
      }

    regions.erase(a);
    }
}

template< typename TInputImage >
void Segmenter< TInputImage >
::RelabelImage(OutputImageTypePointer img,
               ImageRegionType region,
               EquivalencyTable::Pointer eqTable)
{
  eqTable->Flatten();

  IdentifierType                         temp;
  ImageRegionIterator< OutputImageType > it(img, region);

  it.GoToBegin();
  while ( !it.IsAtEnd() )
    {
    temp = eqTable->Lookup( it.Get() );
    if ( temp != it.Get() )  { it.Set(temp); }
    ++it;
    }
}

template< typename TInputImage >
void Segmenter< TInputImage >::Threshold(InputImageTypePointer destination,
                                         InputImageTypePointer source,
                                         const ImageRegionType source_region,
                                         const ImageRegionType destination_region,
                                         InputPixelType threshold)
{
  ImageRegionIterator< InputImageType > dIt(destination, destination_region);
  ImageRegionIterator< InputImageType > sIt(source, source_region);

  dIt.GoToBegin();
  sIt.GoToBegin();

  // Assumes that source_region and destination region are the same size.  Does
  // no checking!!
  if ( NumericTraits< InputPixelType >::is_integer )
    {
    // integral data type, if any pixel is at the maximum possible
    // value for the data type, then drop the value by one intensity
    // value. This the watershed algorithm to construct a "barrier" or
    // "wall" around the image that will stop the watershed without
    // requiring a expensive boundary condition checks.
    while ( !dIt.IsAtEnd() )
      {
      InputPixelType tmp = sIt.Get();
      if ( tmp < threshold )
        {
        dIt.Set(threshold);
        }
CLANG_PRAGMA_PUSH
CLANG_SUPPRESS_Wfloat_equal
      else if ( tmp == NumericTraits< InputPixelType >::max() )
CLANG_PRAGMA_POP
        {
        dIt.Set(tmp - NumericTraits< InputPixelType >::OneValue());
        }
      else
        {
        dIt.Set(tmp);
        }
      ++dIt;
      ++sIt;
      }
    }
  else
    {
    // floating point data, no need to worry about overflow
    while ( !dIt.IsAtEnd() )
      {
      if ( sIt.Get() < threshold )
        {
        dIt.Set(threshold);
        }
      else
        {
        dIt.Set( sIt.Get() );
        }
      ++dIt;
      ++sIt;
      }
    }
}

/*
  ----------------------------------------------------------------------------
  Pipeline methods
  ----------------------------------------------------------------------------
*/
template< typename TInputImage >
typename Segmenter< TInputImage >::DataObjectPointer
Segmenter< TInputImage >
::MakeOutput(DataObjectPointerArraySizeType idx)
{
  if ( idx == 0 )
    {
    return OutputImageType::New().GetPointer();
    }
  else if ( idx == 1 )
    {
    return SegmentTableType::New().GetPointer();
    }
  else if ( idx == 2 )
    {
    return BoundaryType::New().GetPointer();
    }
  else { return ITK_NULLPTR; }
}

template< typename TInputImage >
void
Segmenter< TInputImage >::UpdateOutputInformation()
{
  unsigned int i;

  // call the superclass' implementation of this method
  Superclass::UpdateOutputInformation();

  // get pointers to the input and output
  typename InputImageType::Pointer inputPtr = this->GetInputImage();
  typename OutputImageType::Pointer outputPtr = this->GetOutputImage();

  if ( !inputPtr || !outputPtr )
    {
    return;
    }
  // we need to compute the output spacing, the output image size, and the
  // output image start index
  const typename InputImageType::SizeType &   inputSize =
    inputPtr->GetLargestPossibleRegion().GetSize();
  const typename InputImageType::IndexType &  inputStartIndex =
    inputPtr->GetLargestPossibleRegion().GetIndex();

  typename OutputImageType::SizeType outputSize;
  typename OutputImageType::IndexType outputStartIndex;

  for ( i = 0; i < OutputImageType::ImageDimension; i++ )
    {
    outputSize[i] = inputSize[i];
    outputStartIndex[i]  = inputStartIndex[i];
    }

  typename OutputImageType::RegionType outputLargestPossibleRegion;
  outputLargestPossibleRegion.SetSize(outputSize);
  outputLargestPossibleRegion.SetIndex(outputStartIndex);

  outputPtr->SetLargestPossibleRegion(outputLargestPossibleRegion);
}

template< typename TInputImage >
void Segmenter< TInputImage >::GenerateInputRequestedRegion()
{
  // call the superclass' implementation of this method
  Superclass::GenerateInputRequestedRegion();

  // get pointers to the input and output
  typename InputImageType::Pointer inputPtr  = this->GetInputImage();
  typename OutputImageType::Pointer outputPtr = this->GetOutputImage();

  if ( !inputPtr || !outputPtr )
    {
    return;
    }

  //
  // FOR NOW WE'LL JUST SET THE INPUT REGION TO THE OUTPUT REGION
  // AND OVERRIDE THIS LATER
  //
  inputPtr->SetRequestedRegion( outputPtr->GetRequestedRegion() );
}

template< typename TInputImage >
void
Segmenter< TInputImage >
::GenerateOutputRequestedRegion(DataObject *output)
{
  // Only the Image output need to be propagated through.
  // No choice but to use RTTI here.
  ImageBase< ImageDimension > *imgData;
  ImageBase< ImageDimension > *op;
  imgData = dynamic_cast< ImageBase< ImageDimension > * >( output );
  typename TInputImage::RegionType c_reg;

  if ( imgData )
    {
    std::vector< ProcessObject::DataObjectPointer >::size_type idx;
    for ( idx = 0; idx < this->GetNumberOfIndexedOutputs(); ++idx )
      {
      if ( this->GetOutput(idx) && this->GetOutput(idx) != output )
        {
        op = dynamic_cast< ImageBase< ImageDimension >
                           * >( this->GetOutput(idx) );

        if ( op ) { this->GetOutput(idx)->SetRequestedRegion(output); }
        }
      }
    }
}

template< typename TInputImage >
Segmenter< TInputImage >
::Segmenter()
{
  m_Threshold = 0.0;
  m_MaximumFloodLevel = 1.0;
  m_CurrentLabel = 1;
  m_DoBoundaryAnalysis = false;
  m_SortEdgeLists = true;
  m_Connectivity.direction = ITK_NULLPTR;
  m_Connectivity.index = ITK_NULLPTR;
  typename OutputImageType::Pointer img =
    static_cast< OutputImageType * >( this->MakeOutput(0).GetPointer() );
  typename SegmentTableType::Pointer st =
    static_cast< SegmentTableType * >( this->MakeOutput(1).GetPointer() );
  typename BoundaryType::Pointer bd =
    static_cast< BoundaryType * >( this->MakeOutput(2).GetPointer() );
  this->SetNumberOfRequiredOutputs(3);
  this->ProcessObject::SetNthOutput( 0, img.GetPointer() );
  this->ProcessObject::SetNthOutput( 1, st.GetPointer() );
  this->ProcessObject::SetNthOutput( 2, bd.GetPointer() );

  // Allocate memory for connectivity
  m_Connectivity.size = 2 * ImageDimension;
  m_Connectivity.index = new unsigned int[m_Connectivity.size];
  m_Connectivity.direction =
    new typename InputImageType::OffsetType[m_Connectivity.size];
}

template< typename TInputImage >
void
Segmenter< TInputImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);
  os << indent << "SortEdgeLists: " << m_SortEdgeLists << std::endl;
  os << indent << "DoBoundaryAnalysis: " << m_DoBoundaryAnalysis << std::endl;
  os << indent << "Threshold: " << m_Threshold << std::endl;
  os << indent << "MaximumFloodLevel: " << m_MaximumFloodLevel << std::endl;
  os << indent << "CurrentLabel: " << m_CurrentLabel << std::endl;
}
} // end namespace watershed
} // end namespace itk

#endif