File: PointSet2.cxx

package info (click to toggle)
insighttoolkit4 4.6.0-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 408,860 kB
  • ctags: 151,204
  • sloc: cpp: 633,356; ansic: 403,038; xml: 51,513; fortran: 34,250; python: 15,831; sh: 2,501; lisp: 2,070; tcl: 1,035; java: 710; makefile: 605; yacc: 323; perl: 200; csh: 195; lex: 177; pascal: 69; cs: 35; ruby: 10
file content (235 lines) | stat: -rw-r--r-- 8,531 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

//  Software Guide : BeginLatex
//
//  The \doxygen{PointSet} class uses an internal container to manage the storage of
//  \doxygen{Point}s. It is more efficient, in general, to manage points by using the
//  access methods provided directly on the points container. The following
//  example illustrates how to interact with the point container and how to use
//  point iterators.
//
//  Software Guide : EndLatex


#include "itkPointSet.h"

int main(int, char *[])
{
  typedef itk::PointSet< unsigned short, 3 > PointSetType;

  //  Software Guide : BeginLatex
  //
  //  The type is defined by the \emph{traits} of the PointSet
  //  class. The following line conveniently takes the PointsContainer type
  //  from the PointSet traits and declare it in the global namespace.
  //
  //  \index{itk::PointSet!PointsContainer}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef PointSetType::PointsContainer      PointsContainer;
  // Software Guide : EndCodeSnippet

  //  Software Guide : BeginLatex
  //
  //  The actual type of the PointsContainer depends on what style of
  //  PointSet is being used. The dynamic PointSet use the
  //  \doxygen{MapContainer} while the static PointSet uses the
  //  \doxygen{VectorContainer}. The vector and map containers are basically
  //  ITK wrappers around the \href{http://www.sgi.com/tech/stl/}{STL}
  //  classes \href{http://www.sgi.com/tech/stl/Map.html}{\code{std::map}}
  //  and \href{http://www.sgi.com/tech/stl/Vector.html}{\code{std::vector}}.
  //  By default, the PointSet uses a static style, hence the default
  //  type of point container is an VectorContainer.  Both the map
  //  and vector container are templated over the type of the elements they
  //  contain. In this case they are templated over PointType.
  //  Containers are reference counted object. They are then created with the
  //  \code{New()} method and assigned to a \doxygen{SmartPointer} after
  //  creation.  The following line creates a point container compatible with
  //  the type of the PointSet from which the trait has been taken.
  //
  //  \index{PointsContainer!New()}
  //  \index{PointsContainer!Pointer}
  //
  //  Software Guide : EndLatex


  // Software Guide : BeginCodeSnippet
  PointsContainer::Pointer points = PointsContainer::New();
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  Points can now be defined using the \code{PointType} trait from the
  //  PointSet.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef PointSetType::PointType   PointType;
  PointType p0;
  PointType p1;
  p0[0] = -1.0; p0[1] = 0.0; p0[2] = 0.0; // Point 0 = {-1,0,0 }
  p1[0] =  1.0; p1[1] = 0.0; p1[2] = 0.0; // Point 1 = { 1,0,0 }
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The created points can be inserted in the PointsContainer using the
  //  generic method \code{InsertElement()} which requires an identifier to
  //  be provided for each point.
  //
  //  \index{PointsContainer!InsertElement()}
  //  \index{PointsContainer!InsertElement()}
  //  \index{itk::VectorContainer!InsertElement()}
  //  \index{itk::MapContainer!InsertElement()}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  unsigned int pointId = 0;
  points->InsertElement( pointId++ , p0 );
  points->InsertElement( pointId++ , p1 );
  // Software Guide : EndCodeSnippet

  PointSetType::Pointer  pointSet = PointSetType::New();


  //  Software Guide : BeginLatex
  //
  //  Finally the PointsContainer can be assigned to the PointSet. This will
  //  substitute any previously existing PointsContainer on the PointSet. The
  //  assignment is done using the \code{SetPoints()} method.
  //
  //  \index{itk::PointSet!SetPoints()}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  pointSet->SetPoints( points );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The PointsContainer object can be obtained from the PointSet using the
  //  \code{GetPoints()} method.  This method returns a pointer
  //  to the actual container owned by the PointSet which is then assigned to
  //  a SmartPointer.
  //
  //  \index{itk::PointSet!GetPoints()}
  //  \index{PointsContainer!Pointer}
  //
  //  Software Guide : EndLatex


  // Software Guide : BeginCodeSnippet
  PointsContainer::Pointer  points2 = pointSet->GetPoints();
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The most efficient way to sequentially visit the points is to use the
  //  iterators provided by PointsContainer. The \code{Iterator} type belongs
  //  to the traits of the PointsContainer classes. It behaves pretty much like
  //  the STL iterators.\footnote{If you dig deep enough into the code, you
  //  will discover that these iterators are actually ITK wrappers around STL
  //  iterators.}  The Points iterator is not a reference counted class, so it
  //  is created directly from the traits without using SmartPointers.
  //
  //  \index{PointsContainer!Iterator}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef PointsContainer::Iterator     PointsIterator;
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The subsequent use of the iterator follows what you may expect from a STL
  //  iterator. The iterator to the first point is obtained from the container
  //  with the \code{Begin()} method and assigned to another iterator.
  //
  //  \index{PointsContainer!Begin()}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  PointsIterator  pointIterator = points->Begin();
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The \code{++} operator on the iterator can be used to advance from one
  //  point to the next. The actual value of the Point to which the iterator is
  //  pointing can be obtained with the \code{Value()} method. The loop for
  //  walking through all the points can be controlled by comparing the current
  //  iterator with the iterator returned by the \code{End()} method of the
  //  PointsContainer. The following lines illustrate the typical loop for
  //  walking through the points.
  //
  //  \index{PointsContainer!End()}
  //  \index{PointsContainer!Iterator}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  PointsIterator end = points->End();
  while( pointIterator != end )
    {
    PointType p = pointIterator.Value();   // access the point
    std::cout << p << std::endl;           // print the point
    ++pointIterator;                       // advance to next point
    }
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  Note that as in STL, the iterator returned by the \code{End()} method is
  //  not a valid iterator. This is called a past-end iterator in order to
  //  indicate that it is the value resulting from advancing one step after
  //  visiting the last element in the container.
  //
  //  The number of elements stored in a container can be queried with the
  //  \code{Size()} method. In the case of the PointSet, the following two
  //  lines of code are equivalent, both of them returning the number of points
  //  in the PointSet.
  //
  //  \index{itk::PointSet!GetNumberOfPoints()}
  //  \index{itk::PointSet!GetPoints()}
  //  \index{PointsContainer!Size()}
  //
  //  Software Guide : EndLatex


  // Software Guide : BeginCodeSnippet
  std::cout << pointSet->GetNumberOfPoints() << std::endl;
  std::cout << pointSet->GetPoints()->Size() << std::endl;
  // Software Guide : EndCodeSnippet

  return 0;
}