File: ResampleVolumesToBeIsotropic.cxx

package info (click to toggle)
insighttoolkit4 4.6.0-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 408,860 kB
  • ctags: 151,204
  • sloc: cpp: 633,356; ansic: 403,038; xml: 51,513; fortran: 34,250; python: 15,831; sh: 2,501; lisp: 2,070; tcl: 1,035; java: 710; makefile: 605; yacc: 323; perl: 200; csh: 195; lex: 177; pascal: 69; cs: 35; ruby: 10
file content (493 lines) | stat: -rw-r--r-- 18,461 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

// Software Guide : BeginLatex
//
// It is unfortunate that it is still very common to find medical image
// datasets that have been acquired with large inter-sclice spacings that
// result in voxels with anisotropic shapes. In many cases these voxels have
// ratios of $[1:5]$ or even $[1:10]$ between the resolution in the plane $(x,y)$
// and the resolution along the $z$ axis. Such dataset are close to
// \textbf{useless} for the purpose of computer assisted image analysis. The
// persistent tendency for acquiring dataset in such formats just reveals how
// small is the understanding of the third dimension that have been gained in
// the clinical settings and in many radiology reading rooms. Datasets that are
// acquired with such large anisotropies bring with them the retrograde
// message: \emph{``I do not think 3D is informative''}.
// They repeat stubbornly that: \emph{``all that you need to know, can be known
// by looking at individual slices, one by one''}. However, the fallacy of such
// statement is made evident with the simple act of looking at the slices when
// reconstructed in any of the ortogonal planes. The ugliness of the extreme
// rectangular pixel shapes becomes obvious, along with the clear technical
// realization that no decent signal processing or algorithms can be performed
// in such images.
//
// Image analysts have a long educational battle to fight in the radiological
// setting in order to bring the message that 3D datasets acquired with
// anisotropies larger than $[1:2]$ are simply dismissive of the most fundamental
// concept of digital signal processing: The Shannon Sampling
// Theorem~\cite{Shannon1948,Shannon1949}.
//
// Facing the inertia of many clinical imaging departments and their
// insistence that these images should be good enough
// for image processing, some image analysts have stoically tried
// to deal with these poor datasets. These image analysts usually
// proceed to subsample the high in-plane resolution and to super-sample the
// inter-slice resolution with the purpose of faking the type of dataset that
// they should have received in the first place: an \textbf{isotropic} dataset.
// This example is an illustration of how such operation can be performed using
// the filter available in the Insight Toolkit.
//
// Note that this example is not presented here as a \emph{solution} to the
// problem of anisotropic datasets.  On the contrary, this is simply a
// \emph{dangerous palliative} that will help to perpetuate the mistake of
// the image acquisition departments. This code is just an analgesic that
// will make you believe that you don't have pain, while a real and lethal
// disease is growing inside you. The real solution to the problem of the
// atrophic anisotropic dataset is to educate radiologist on the fundamental
// principles of image processing. If you really care about the technical
// decency of the medical image processing field, and you really care about
// providing your best effort to the patients who will receive health care
// directly or indirectly affected by your processed images, then it is your
// duty to reject anisotropic datasets and to patiently explain radiologist
// why a barbarity such as a $[1:5]$ anisotropy ratio makes a data set to be
// just ``a collection of slices'' instead of an authentic 3D datasets.
//
// Please, before employing the techniques covered in this section, do kindly
// invite your fellow radiologist to see the dataset in an orthogonal
// slice. Zoom in that image in a viewer without any linear interpolation
// until you see the daunting reality of the rectangular pixels. Let her/him
// know how absurd is to process digital data that have been sampled at
// ratios of $[1:5]$ or $[1:10]$.  Then, let them know that the first thing
// that you are going to do is to throw away all that high in-plane
// resolution and to \emph{make up} data in-between the slices in order to
// compensate for their low resolution.  Only then, you will have gained the
// right to use this code.
//
// \index{Anisotropic data sets}
// \index{Subsampling}
// \index{Supersampling}
// \index{Resampling}
//
// Software Guide : EndLatex


// Software Guide : BeginLatex
//
// Let's now move into the code.... and, yes, bring with you that
// guilt\footnote{A feeling of regret or remorse for having committed some
// improper act; a recognition of one's own responsibility for doing something
// wrong.}, because the fact that you are going to use the code below, is the
// evidence that we have lost one more battle on the quest for real 3D dataset
// processing.
//
// This example performs subsampling on the in-plane resolution and performs
// super-sampling along the inter-slices resolution. The subsampling process
// requires that we preprocess the data with a smoothing filter in order to
// avoid the occurrence of aliasing effects due to overlap of the spectrum in
// the frequency domain~\cite{Shannon1948,Shannon1949}. The smoothing is
// performed here using the \code{RecursiveGaussian} filter, given that it
// provides a convenient run-time performance.
//
// The first thing that you will need to do in order to resample this ugly
// anisotropic dataset is to include the header files for the
// \doxygen{ResampleImageFilter}, and the Gaussian smoothing filter.
//
// Software Guide : EndLatex

#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

// Software Guide : BeginCodeSnippet
#include "itkResampleImageFilter.h"
#include "itkRecursiveGaussianImageFilter.h"
// Software Guide : EndCodeSnippet


// Software Guide : BeginLatex
//
// The resampling filter will need a Transform in order to map point
// coordinates and will need an interpolator in order to compute intensity
// values for the new resampled image. In this particular case we use the
// \doxygen{IdentityTransform} because the image is going to be resampled by
// preserving the physical extent of the sampled region. The Linear
// interpolator is used as a common trade-off, although arguably we should use
// one type of interpolator for the in-plane subsampling process and another
// one for the inter-slice supersampling, but again, one should wonder why to
// enter into technical sophistication here, when what we are doing is to
// cover-up for an improper acquisition of medical data, and we are just trying
// to make it look as if it was correctly acquired.
//
// Software Guide : EndLatex


// Software Guide : BeginCodeSnippet
#include "itkIdentityTransform.h"
// Software Guide : EndCodeSnippet


// Software Guide : BeginLatex
//
// Note that, as part of the preprocessing of the image, in this example we are
// also rescaling the range of intensities. This operation has already been
// described as Intensity Windowing. In a real clinical application, this step
// requires careful consideration of the range of intensities that contain
// information about the anatomical structures that are of interest for the
// current clinical application. It practice you may want to remove this step
// of intensity rescaling.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "itkIntensityWindowingImageFilter.h"
// Software Guide : EndCodeSnippet


int main( int argc, char * argv[] )
{
  if( argc < 5 )
    {
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0] << "  inputImageFile  outputImageFile  lower upper " << std::endl;
    return EXIT_FAILURE;
    }

// Software Guide : BeginLatex
//
// We made explicit now our choices for the pixel type and dimension of the
// input image to be processed, as well as the pixel type that we intend to use
// for the internal computation during the smoothing and resampling.
//
// Software Guide : EndLatex


// Software Guide : BeginCodeSnippet
  const     unsigned int    Dimension = 3;

  typedef   unsigned short  InputPixelType;
  typedef   float           InternalPixelType;

  typedef itk::Image< InputPixelType,    Dimension >   InputImageType;
  typedef itk::Image< InternalPixelType, Dimension >   InternalImageType;
// Software Guide : EndCodeSnippet


  typedef itk::ImageFileReader< InputImageType  >  ReaderType;

  ReaderType::Pointer reader = ReaderType::New();

  reader->SetFileName( argv[1] );

  try
    {
    reader->Update();
    }
  catch( itk::ExceptionObject & excep )
    {
    std::cerr << "Exception caught!" << std::endl;
    std::cerr << excep << std::endl;
    }

  typedef itk::IntensityWindowingImageFilter<
                                  InputImageType,
                                  InternalImageType >  IntensityFilterType;

  IntensityFilterType::Pointer intensityWindowing = IntensityFilterType::New();

  intensityWindowing->SetWindowMinimum( atoi( argv[3] ) );
  intensityWindowing->SetWindowMaximum( atoi( argv[4] ) );

  intensityWindowing->SetOutputMinimum(   0.0 );
  intensityWindowing->SetOutputMaximum( 255.0 ); // floats but in the range of chars.

  intensityWindowing->SetInput( reader->GetOutput() );


// Software Guide : BeginLatex
//
// We instantiate the smoothing filter that will be used on the preprocessing
// for subsampling the in-plane resolution of the dataset.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef itk::RecursiveGaussianImageFilter<
                                InternalImageType,
                                InternalImageType > GaussianFilterType;
// Software Guide : EndCodeSnippet


// Software Guide : BeginLatex
//
// We create two instances of the smoothing filter, one will smooth along the
// $X$ direction while the other will smooth along the $Y$ direction. They are
// connected in a cascade in the pipeline, while taking their input from the
// intensity windowing filter. Note that you may want to skip the intensity
// windowing scale and simply take the input directly from the reader.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  GaussianFilterType::Pointer smootherX = GaussianFilterType::New();
  GaussianFilterType::Pointer smootherY = GaussianFilterType::New();

  smootherX->SetInput( intensityWindowing->GetOutput() );
  smootherY->SetInput( smootherX->GetOutput() );
// Software Guide : EndCodeSnippet


// Software Guide : BeginLatex
//
// We must now provide the settings for the resampling itself. This is done by
// searching for a value of isotropic resolution that will provide a trade-off
// between the evil of subsampling and the evil of supersampling. We advance
// here the conjecture that the geometrical mean between the in-plane and the
// inter-slice resolutions should be a convenient isotropic resolution to use.
// This conjecture is supported on nothing else than intuition and common
// sense. You can rightfully argue that this choice deserves a more technical
// consideration, but then, if you are so inclined to the technical correctness
// of the image sampling process, you should not be using this code, and should
// rather we talking about such technical correctness to the radiologist who
// acquired this ugly anisotropic dataset.
//
// We take the image from the input and then request its array of pixel spacing
// values.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  InputImageType::ConstPointer inputImage = reader->GetOutput();

  const InputImageType::SpacingType& inputSpacing = inputImage->GetSpacing();
// Software Guide : EndCodeSnippet


// Software Guide : BeginLatex
//
// and apply our ad-hoc conjecture that the correct anisotropic resolution
// to use is the geometrical mean of the in-plane and inter-slice resolutions.
// Then set this spacing as the Sigma value to be used for the Gaussian
// smoothing at the preprocessing stage.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  const double isoSpacing = std::sqrt( inputSpacing[2] * inputSpacing[0] );

  smootherX->SetSigma( isoSpacing );
  smootherY->SetSigma( isoSpacing );
// Software Guide : EndCodeSnippet


// Software Guide : BeginLatex
//
// We instruct the smoothing filters to act along the $X$ and $Y$ direction
// respectively.
//
// Software Guide : EndLatex


// Software Guide : BeginCodeSnippet
  smootherX->SetDirection( 0 );
  smootherY->SetDirection( 1 );
// Software Guide : EndCodeSnippet


// Software Guide : BeginLatex
//
// Now that we have taken care of the smoothing in-plane, we proceed to
// instantiate the resampling filter that will reconstruct an isotropic image.
// We start by declaring the pixel type to be use at the output of such filter,
// then instantiate the image type and the type for the resampling filter.
// Finally we construct an instantiation of such a filter.
//
// Software Guide : EndLatex


// Software Guide : BeginCodeSnippet
  typedef   unsigned char   OutputPixelType;

  typedef itk::Image< OutputPixelType,   Dimension >   OutputImageType;

  typedef itk::ResampleImageFilter<
                InternalImageType, OutputImageType >  ResampleFilterType;

  ResampleFilterType::Pointer resampler = ResampleFilterType::New();
// Software Guide : EndCodeSnippet


// Software Guide : BeginLatex
//
// The resampling filter requires that we provide a Transform, that in this
// particular case can simply be an identity transform.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef itk::IdentityTransform< double, Dimension >  TransformType;

  TransformType::Pointer transform = TransformType::New();
  transform->SetIdentity();

  resampler->SetTransform( transform );
// Software Guide : EndCodeSnippet


// Software Guide : BeginLatex
//
// The filter also requires an interpolator to be passed to it. In this case we
// chose to use a linear interpolator.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef itk::LinearInterpolateImageFunction<
                          InternalImageType, double >  InterpolatorType;

  InterpolatorType::Pointer interpolator = InterpolatorType::New();

  resampler->SetInterpolator( interpolator );
// Software Guide : EndCodeSnippet


  resampler->SetDefaultPixelValue( 255 ); // highlight regions without source


// Software Guide : BeginLatex
//
// The pixel spacing of the resampled dataset is loaded in a \code{SpacingType}
// and passed to the resampling filter.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  OutputImageType::SpacingType spacing;

  spacing[0] = isoSpacing;
  spacing[1] = isoSpacing;
  spacing[2] = isoSpacing;

  resampler->SetOutputSpacing( spacing );
// Software Guide : EndCodeSnippet


// Software Guide : BeginLatex
//
// The origin and orientation of the output image is maintained, since we
// decided to resample the image in the same physical extent of the input
// anisotropic image.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  resampler->SetOutputOrigin( inputImage->GetOrigin() );
  resampler->SetOutputDirection( inputImage->GetDirection() );
// Software Guide : EndCodeSnippet


// Software Guide : BeginLatex
//
// The number of pixels to use along each dimension in the grid of the
// resampled image is computed using the ratio between the pixel spacings of the
// input image and those of the output image. Note that the computation of the
// number of pixels along the $Z$ direction is slightly different with the
// purpose of making sure that we don't attempt to compute pixels that are
// outside of the original anisotropic dataset.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  InputImageType::SizeType   inputSize =
                    inputImage->GetLargestPossibleRegion().GetSize();

  typedef InputImageType::SizeType::SizeValueType SizeValueType;

  const double dx = inputSize[0] * inputSpacing[0] / isoSpacing;
  const double dy = inputSize[1] * inputSpacing[1] / isoSpacing;

  const double dz = (inputSize[2] - 1 ) * inputSpacing[2] / isoSpacing;
// Software Guide : EndCodeSnippet


// Software Guide : BeginLatex
//
// Finally the values are stored in a \code{SizeType} and passed to the
// resampling filter. Note that this process requires a casting since the
// computation are performed in \code{double}, while the elements of the
// \code{SizeType} are integers.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  InputImageType::SizeType   size;

  size[0] = static_cast<SizeValueType>( dx );
  size[1] = static_cast<SizeValueType>( dy );
  size[2] = static_cast<SizeValueType>( dz );

  resampler->SetSize( size );
// Software Guide : EndCodeSnippet


// Software Guide : BeginLatex
//
// Our last action is to take the input for the resampling image filter from
// the output of the cascade of smoothing filters, and then to trigger the
// execution of the pipeline by invoking the \code{Update()} method on the
// resampling filter.
//
// Software Guide : EndLatex


// Software Guide : BeginCodeSnippet
  resampler->SetInput( smootherY->GetOutput() );

  resampler->Update();
// Software Guide : EndCodeSnippet


// Software Guide : BeginLatex
//
// At this point we should take some minutes in silence to reflect on the
// circumstances that have lead us to accept to cover-up for the improper
// acquisition of medical data.
//
// Software Guide : EndLatex


  typedef itk::ImageFileWriter< OutputImageType >  WriterType;

  WriterType::Pointer writer = WriterType::New();

  writer->SetFileName( argv[2] );
  writer->SetInput( resampler->GetOutput() );

  try
    {
    writer->Update();
    }
  catch( itk::ExceptionObject & excep )
    {
    std::cerr << "Exception caught !" << std::endl;
    std::cerr << excep << std::endl;
    }


  return EXIT_SUCCESS;
}