1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// It is unfortunate that it is still very common to find medical image
// datasets that have been acquired with large inter-sclice spacings that
// result in voxels with anisotropic shapes. In many cases these voxels have
// ratios of $[1:5]$ or even $[1:10]$ between the resolution in the plane $(x,y)$
// and the resolution along the $z$ axis. Such dataset are close to
// \textbf{useless} for the purpose of computer assisted image analysis. The
// persistent tendency for acquiring dataset in such formats just reveals how
// small is the understanding of the third dimension that have been gained in
// the clinical settings and in many radiology reading rooms. Datasets that are
// acquired with such large anisotropies bring with them the retrograde
// message: \emph{``I do not think 3D is informative''}.
// They repeat stubbornly that: \emph{``all that you need to know, can be known
// by looking at individual slices, one by one''}. However, the fallacy of such
// statement is made evident with the simple act of looking at the slices when
// reconstructed in any of the ortogonal planes. The ugliness of the extreme
// rectangular pixel shapes becomes obvious, along with the clear technical
// realization that no decent signal processing or algorithms can be performed
// in such images.
//
// Image analysts have a long educational battle to fight in the radiological
// setting in order to bring the message that 3D datasets acquired with
// anisotropies larger than $[1:2]$ are simply dismissive of the most fundamental
// concept of digital signal processing: The Shannon Sampling
// Theorem~\cite{Shannon1948,Shannon1949}.
//
// Facing the inertia of many clinical imaging departments and their
// insistence that these images should be good enough
// for image processing, some image analysts have stoically tried
// to deal with these poor datasets. These image analysts usually
// proceed to subsample the high in-plane resolution and to super-sample the
// inter-slice resolution with the purpose of faking the type of dataset that
// they should have received in the first place: an \textbf{isotropic} dataset.
// This example is an illustration of how such operation can be performed using
// the filter available in the Insight Toolkit.
//
// Note that this example is not presented here as a \emph{solution} to the
// problem of anisotropic datasets. On the contrary, this is simply a
// \emph{dangerous palliative} that will help to perpetuate the mistake of
// the image acquisition departments. This code is just an analgesic that
// will make you believe that you don't have pain, while a real and lethal
// disease is growing inside you. The real solution to the problem of the
// atrophic anisotropic dataset is to educate radiologist on the fundamental
// principles of image processing. If you really care about the technical
// decency of the medical image processing field, and you really care about
// providing your best effort to the patients who will receive health care
// directly or indirectly affected by your processed images, then it is your
// duty to reject anisotropic datasets and to patiently explain radiologist
// why a barbarity such as a $[1:5]$ anisotropy ratio makes a data set to be
// just ``a collection of slices'' instead of an authentic 3D datasets.
//
// Please, before employing the techniques covered in this section, do kindly
// invite your fellow radiologist to see the dataset in an orthogonal
// slice. Zoom in that image in a viewer without any linear interpolation
// until you see the daunting reality of the rectangular pixels. Let her/him
// know how absurd is to process digital data that have been sampled at
// ratios of $[1:5]$ or $[1:10]$. Then, let them know that the first thing
// that you are going to do is to throw away all that high in-plane
// resolution and to \emph{make up} data in-between the slices in order to
// compensate for their low resolution. Only then, you will have gained the
// right to use this code.
//
// \index{Anisotropic data sets}
// \index{Subsampling}
// \index{Supersampling}
// \index{Resampling}
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// Let's now move into the code.... and, yes, bring with you that
// guilt\footnote{A feeling of regret or remorse for having committed some
// improper act; a recognition of one's own responsibility for doing something
// wrong.}, because the fact that you are going to use the code below, is the
// evidence that we have lost one more battle on the quest for real 3D dataset
// processing.
//
// This example performs subsampling on the in-plane resolution and performs
// super-sampling along the inter-slices resolution. The subsampling process
// requires that we preprocess the data with a smoothing filter in order to
// avoid the occurrence of aliasing effects due to overlap of the spectrum in
// the frequency domain~\cite{Shannon1948,Shannon1949}. The smoothing is
// performed here using the \code{RecursiveGaussian} filter, given that it
// provides a convenient run-time performance.
//
// The first thing that you will need to do in order to resample this ugly
// anisotropic dataset is to include the header files for the
// \doxygen{ResampleImageFilter}, and the Gaussian smoothing filter.
//
// Software Guide : EndLatex
#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
// Software Guide : BeginCodeSnippet
#include "itkResampleImageFilter.h"
#include "itkRecursiveGaussianImageFilter.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The resampling filter will need a Transform in order to map point
// coordinates and will need an interpolator in order to compute intensity
// values for the new resampled image. In this particular case we use the
// \doxygen{IdentityTransform} because the image is going to be resampled by
// preserving the physical extent of the sampled region. The Linear
// interpolator is used as a common trade-off, although arguably we should use
// one type of interpolator for the in-plane subsampling process and another
// one for the inter-slice supersampling, but again, one should wonder why to
// enter into technical sophistication here, when what we are doing is to
// cover-up for an improper acquisition of medical data, and we are just trying
// to make it look as if it was correctly acquired.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkIdentityTransform.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Note that, as part of the preprocessing of the image, in this example we are
// also rescaling the range of intensities. This operation has already been
// described as Intensity Windowing. In a real clinical application, this step
// requires careful consideration of the range of intensities that contain
// information about the anatomical structures that are of interest for the
// current clinical application. It practice you may want to remove this step
// of intensity rescaling.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkIntensityWindowingImageFilter.h"
// Software Guide : EndCodeSnippet
int main( int argc, char * argv[] )
{
if( argc < 5 )
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " inputImageFile outputImageFile lower upper " << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// We made explicit now our choices for the pixel type and dimension of the
// input image to be processed, as well as the pixel type that we intend to use
// for the internal computation during the smoothing and resampling.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const unsigned int Dimension = 3;
typedef unsigned short InputPixelType;
typedef float InternalPixelType;
typedef itk::Image< InputPixelType, Dimension > InputImageType;
typedef itk::Image< InternalPixelType, Dimension > InternalImageType;
// Software Guide : EndCodeSnippet
typedef itk::ImageFileReader< InputImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );
try
{
reader->Update();
}
catch( itk::ExceptionObject & excep )
{
std::cerr << "Exception caught!" << std::endl;
std::cerr << excep << std::endl;
}
typedef itk::IntensityWindowingImageFilter<
InputImageType,
InternalImageType > IntensityFilterType;
IntensityFilterType::Pointer intensityWindowing = IntensityFilterType::New();
intensityWindowing->SetWindowMinimum( atoi( argv[3] ) );
intensityWindowing->SetWindowMaximum( atoi( argv[4] ) );
intensityWindowing->SetOutputMinimum( 0.0 );
intensityWindowing->SetOutputMaximum( 255.0 ); // floats but in the range of chars.
intensityWindowing->SetInput( reader->GetOutput() );
// Software Guide : BeginLatex
//
// We instantiate the smoothing filter that will be used on the preprocessing
// for subsampling the in-plane resolution of the dataset.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::RecursiveGaussianImageFilter<
InternalImageType,
InternalImageType > GaussianFilterType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We create two instances of the smoothing filter, one will smooth along the
// $X$ direction while the other will smooth along the $Y$ direction. They are
// connected in a cascade in the pipeline, while taking their input from the
// intensity windowing filter. Note that you may want to skip the intensity
// windowing scale and simply take the input directly from the reader.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
GaussianFilterType::Pointer smootherX = GaussianFilterType::New();
GaussianFilterType::Pointer smootherY = GaussianFilterType::New();
smootherX->SetInput( intensityWindowing->GetOutput() );
smootherY->SetInput( smootherX->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We must now provide the settings for the resampling itself. This is done by
// searching for a value of isotropic resolution that will provide a trade-off
// between the evil of subsampling and the evil of supersampling. We advance
// here the conjecture that the geometrical mean between the in-plane and the
// inter-slice resolutions should be a convenient isotropic resolution to use.
// This conjecture is supported on nothing else than intuition and common
// sense. You can rightfully argue that this choice deserves a more technical
// consideration, but then, if you are so inclined to the technical correctness
// of the image sampling process, you should not be using this code, and should
// rather we talking about such technical correctness to the radiologist who
// acquired this ugly anisotropic dataset.
//
// We take the image from the input and then request its array of pixel spacing
// values.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
InputImageType::ConstPointer inputImage = reader->GetOutput();
const InputImageType::SpacingType& inputSpacing = inputImage->GetSpacing();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// and apply our ad-hoc conjecture that the correct anisotropic resolution
// to use is the geometrical mean of the in-plane and inter-slice resolutions.
// Then set this spacing as the Sigma value to be used for the Gaussian
// smoothing at the preprocessing stage.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const double isoSpacing = std::sqrt( inputSpacing[2] * inputSpacing[0] );
smootherX->SetSigma( isoSpacing );
smootherY->SetSigma( isoSpacing );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We instruct the smoothing filters to act along the $X$ and $Y$ direction
// respectively.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
smootherX->SetDirection( 0 );
smootherY->SetDirection( 1 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Now that we have taken care of the smoothing in-plane, we proceed to
// instantiate the resampling filter that will reconstruct an isotropic image.
// We start by declaring the pixel type to be use at the output of such filter,
// then instantiate the image type and the type for the resampling filter.
// Finally we construct an instantiation of such a filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef unsigned char OutputPixelType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
typedef itk::ResampleImageFilter<
InternalImageType, OutputImageType > ResampleFilterType;
ResampleFilterType::Pointer resampler = ResampleFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The resampling filter requires that we provide a Transform, that in this
// particular case can simply be an identity transform.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::IdentityTransform< double, Dimension > TransformType;
TransformType::Pointer transform = TransformType::New();
transform->SetIdentity();
resampler->SetTransform( transform );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The filter also requires an interpolator to be passed to it. In this case we
// chose to use a linear interpolator.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::LinearInterpolateImageFunction<
InternalImageType, double > InterpolatorType;
InterpolatorType::Pointer interpolator = InterpolatorType::New();
resampler->SetInterpolator( interpolator );
// Software Guide : EndCodeSnippet
resampler->SetDefaultPixelValue( 255 ); // highlight regions without source
// Software Guide : BeginLatex
//
// The pixel spacing of the resampled dataset is loaded in a \code{SpacingType}
// and passed to the resampling filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
OutputImageType::SpacingType spacing;
spacing[0] = isoSpacing;
spacing[1] = isoSpacing;
spacing[2] = isoSpacing;
resampler->SetOutputSpacing( spacing );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The origin and orientation of the output image is maintained, since we
// decided to resample the image in the same physical extent of the input
// anisotropic image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
resampler->SetOutputOrigin( inputImage->GetOrigin() );
resampler->SetOutputDirection( inputImage->GetDirection() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The number of pixels to use along each dimension in the grid of the
// resampled image is computed using the ratio between the pixel spacings of the
// input image and those of the output image. Note that the computation of the
// number of pixels along the $Z$ direction is slightly different with the
// purpose of making sure that we don't attempt to compute pixels that are
// outside of the original anisotropic dataset.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
InputImageType::SizeType inputSize =
inputImage->GetLargestPossibleRegion().GetSize();
typedef InputImageType::SizeType::SizeValueType SizeValueType;
const double dx = inputSize[0] * inputSpacing[0] / isoSpacing;
const double dy = inputSize[1] * inputSpacing[1] / isoSpacing;
const double dz = (inputSize[2] - 1 ) * inputSpacing[2] / isoSpacing;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally the values are stored in a \code{SizeType} and passed to the
// resampling filter. Note that this process requires a casting since the
// computation are performed in \code{double}, while the elements of the
// \code{SizeType} are integers.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
InputImageType::SizeType size;
size[0] = static_cast<SizeValueType>( dx );
size[1] = static_cast<SizeValueType>( dy );
size[2] = static_cast<SizeValueType>( dz );
resampler->SetSize( size );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Our last action is to take the input for the resampling image filter from
// the output of the cascade of smoothing filters, and then to trigger the
// execution of the pipeline by invoking the \code{Update()} method on the
// resampling filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
resampler->SetInput( smootherY->GetOutput() );
resampler->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// At this point we should take some minutes in silence to reflect on the
// circumstances that have lead us to accept to cover-up for the improper
// acquisition of medical data.
//
// Software Guide : EndLatex
typedef itk::ImageFileWriter< OutputImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName( argv[2] );
writer->SetInput( resampler->GetOutput() );
try
{
writer->Update();
}
catch( itk::ExceptionObject & excep )
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}
return EXIT_SUCCESS;
}
|