1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// This example illustrates how to perform Iterative Closest Point (ICP)
// registration in ITK using a DistanceMap in order to increase the performance.
// There is of course a trade-off between the time needed for computing the
// DistanceMap and the time saving obtained by its repeated use during the
// iterative computation of the point to point distances. It is then necessary
// in practice to ponder both factors.
//
// \doxygen{EuclideanDistancePointMetric}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkTranslationTransform.h"
#include "itkEuclideanDistancePointMetric.h"
#include "itkLevenbergMarquardtOptimizer.h"
#include "itkPointSetToPointSetRegistrationMethod.h"
#include "itkDanielssonDistanceMapImageFilter.h"
#include "itkPointSetToImageFilter.h"
#include <iostream>
#include <fstream>
int main(int argc, char * argv[] )
{
if( argc < 3 )
{
std::cerr << "Arguments Missing. " << std::endl;
std::cerr <<
"Usage: IterativeClosestPoint3 fixedPointsFile movingPointsFile "
<< std::endl;
return 1;
}
const unsigned int Dimension = 2;
typedef itk::PointSet< float, Dimension > PointSetType;
PointSetType::Pointer fixedPointSet = PointSetType::New();
PointSetType::Pointer movingPointSet = PointSetType::New();
typedef PointSetType::PointType PointType;
typedef PointSetType::PointsContainer PointsContainer;
PointsContainer::Pointer fixedPointContainer = PointsContainer::New();
PointsContainer::Pointer movingPointContainer = PointsContainer::New();
PointType fixedPoint;
PointType movingPoint;
// Read the file containing coordinates of fixed points.
std::ifstream fixedFile;
fixedFile.open( argv[1] );
if( fixedFile.fail() )
{
std::cerr << "Error opening points file with name : " << std::endl;
std::cerr << argv[1] << std::endl;
return 2;
}
unsigned int pointId = 0;
fixedFile >> fixedPoint;
while( !fixedFile.eof() )
{
fixedPointContainer->InsertElement( pointId, fixedPoint );
fixedFile >> fixedPoint;
pointId++;
}
fixedPointSet->SetPoints( fixedPointContainer );
std::cout << "Number of fixed Points = "
<< fixedPointSet->GetNumberOfPoints() << std::endl;
// Read the file containing coordinates of moving points.
std::ifstream movingFile;
movingFile.open( argv[2] );
if( movingFile.fail() )
{
std::cerr << "Error opening points file with name : " << std::endl;
std::cerr << argv[2] << std::endl;
return 2;
}
pointId = 0;
movingFile >> movingPoint;
while( !movingFile.eof() )
{
movingPointContainer->InsertElement( pointId, movingPoint );
movingFile >> movingPoint;
pointId++;
}
movingPointSet->SetPoints( movingPointContainer );
std::cout << "Number of moving Points = "
<< movingPointSet->GetNumberOfPoints() << std::endl;
//-----------------------------------------------------------
// Set up the Metric
//-----------------------------------------------------------
typedef itk::EuclideanDistancePointMetric<
PointSetType,
PointSetType>
MetricType;
MetricType::Pointer metric = MetricType::New();
//-----------------------------------------------------------
// Set up a Transform
//-----------------------------------------------------------
typedef itk::TranslationTransform< double, Dimension > TransformType;
TransformType::Pointer transform = TransformType::New();
// Optimizer Type
typedef itk::LevenbergMarquardtOptimizer OptimizerType;
OptimizerType::Pointer optimizer = OptimizerType::New();
optimizer->SetUseCostFunctionGradient(false);
// Registration Method
typedef itk::PointSetToPointSetRegistrationMethod<
PointSetType,
PointSetType >
RegistrationType;
RegistrationType::Pointer registration = RegistrationType::New();
// Scale the translation components of the Transform in the Optimizer
OptimizerType::ScalesType scales( transform->GetNumberOfParameters() );
scales.Fill( 0.01 );
const unsigned long numberOfIterations = 100;
const double gradientTolerance = 1e-5; // convergence criterion
const double valueTolerance = 1e-5; // convergence criterion
const double epsilonFunction = 1e-6; // convergence criterion
optimizer->SetScales( scales );
optimizer->SetNumberOfIterations( numberOfIterations );
optimizer->SetValueTolerance( valueTolerance );
optimizer->SetGradientTolerance( gradientTolerance );
optimizer->SetEpsilonFunction( epsilonFunction );
// Start from an Identity transform (in a normal case, the user
// can probably provide a better guess than the identity...
transform->SetIdentity();
registration->SetInitialTransformParameters( transform->GetParameters() );
//------------------------------------------------------
// Connect all the components required for Registration
//------------------------------------------------------
registration->SetMetric( metric );
registration->SetOptimizer( optimizer );
registration->SetTransform( transform );
registration->SetFixedPointSet( fixedPointSet );
registration->SetMovingPointSet( movingPointSet );
//------------------------------------------------------
// Prepare the Distance Map in order to accelerate
// distance computations.
//------------------------------------------------------
//
// First map the Fixed Points into a binary image.
// This is needed because the DanielssonDistance
// filter expects an image as input.
//
//-------------------------------------------------
typedef itk::Image< unsigned char, Dimension > BinaryImageType;
typedef itk::PointSetToImageFilter<
PointSetType,
BinaryImageType> PointsToImageFilterType;
PointsToImageFilterType::Pointer
pointsToImageFilter = PointsToImageFilterType::New();
pointsToImageFilter->SetInput( fixedPointSet );
BinaryImageType::SpacingType spacing;
spacing.Fill( 1.0 );
BinaryImageType::PointType origin;
origin.Fill( 0.0 );
pointsToImageFilter->SetSpacing( spacing );
pointsToImageFilter->SetOrigin( origin );
pointsToImageFilter->Update();
BinaryImageType::Pointer binaryImage = pointsToImageFilter->GetOutput();
typedef itk::Image< unsigned short, Dimension > DistanceImageType;
typedef itk::DanielssonDistanceMapImageFilter<
BinaryImageType, DistanceImageType> DistanceFilterType;
DistanceFilterType::Pointer distanceFilter = DistanceFilterType::New();
distanceFilter->SetInput( binaryImage );
distanceFilter->Update();
metric->SetDistanceMap( distanceFilter->GetOutput() );
try
{
registration->Update();
}
catch( itk::ExceptionObject & e )
{
std::cout << e << std::endl;
return EXIT_FAILURE;
}
std::cout << "Solution = " << transform->GetParameters() << std::endl;
// Software Guide : EndCodeSnippet
return EXIT_SUCCESS;
}
|