1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkPointSet.h"
#include "itkBSplineScatteredDataPointSetToImageFilter.h"
/**
* In this test, we approximate a 2-D scalar field.
* The scattered data is derived from a segmented
* image. We write the output to an image for
* comparison.
*/
int itkBSplineScatteredDataPointSetToImageFilterTest( int argc, char * argv [] )
{
if ( argc != 3 )
{
std::cout << "Usage: " << argv[0] << " inputImage outputImage" << std::endl;
return EXIT_FAILURE;
}
const unsigned int ParametricDimension = 2;
const unsigned int DataDimension = 1;
typedef int PixelType;
typedef itk::Image<PixelType, ParametricDimension> InputImageType;
typedef float RealType;
typedef itk::Vector<RealType, DataDimension> VectorType;
typedef itk::Image<VectorType, ParametricDimension> VectorImageType;
typedef itk::PointSet
<VectorImageType::PixelType, ParametricDimension> PointSetType;
PointSetType::Pointer pointSet = PointSetType::New();
typedef itk::ImageFileReader<InputImageType> ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );
reader->Update();
itk::ImageRegionIteratorWithIndex<InputImageType>
It( reader->GetOutput(), reader->GetOutput()->GetLargestPossibleRegion() );
// Iterate through the input image which consists of multivalued
// foreground pixels (=nonzero) and background values (=zero).
// The foreground pixels comprise the input point set.
for ( It.GoToBegin(); !It.IsAtEnd(); ++It )
{
if ( It.Get() != itk::NumericTraits<PixelType>::Zero )
{
// We extract both the 2-D location of the point
// and the pixel value of that point.
PointSetType::PointType point;
reader->GetOutput()->TransformIndexToPhysicalPoint( It.GetIndex(), point );
unsigned long i = pointSet->GetNumberOfPoints();
pointSet->SetPoint( i, point );
PointSetType::PixelType V( DataDimension );
V[0] = static_cast<RealType>( It.Get() );
pointSet->SetPointData( i, V );
}
}
// Instantiate the B-spline filter and set the desired parameters.
typedef itk::BSplineScatteredDataPointSetToImageFilter
<PointSetType, VectorImageType> FilterType;
FilterType::Pointer filter = FilterType::New();
filter->SetSplineOrder( 3 );
FilterType::ArrayType ncps;
ncps.Fill( 4 );
filter->SetNumberOfControlPoints( ncps );
filter->SetNumberOfLevels( 3 );
FilterType::ArrayType close;
close.Fill( 0 );
filter->SetCloseDimension( close );
// Define the parametric domain.
filter->SetOrigin( reader->GetOutput()->GetOrigin() );
filter->SetSpacing( reader->GetOutput()->GetSpacing() );
filter->SetSize( reader->GetOutput()->GetLargestPossibleRegion().GetSize() );
filter->SetDirection( reader->GetOutput()->GetDirection() );
filter->SetInput( pointSet );
try
{
filter->Update();
}
catch (...)
{
std::cerr << "Test 1: itkBSplineScatteredDataImageFilter exception thrown"
<< std::endl;
return EXIT_FAILURE;
}
VectorImageType *outputImage = filter->GetOutput();
std::cout << "Origin: " << filter->GetOrigin() << std::endl;
std::cout << "Spacing: " << filter->GetSpacing() << std::endl;
std::cout << "Size: " << filter->GetSize() << std::endl;
std::cout << "Direction: " << filter->GetDirection() << std::endl;
std::cout << "Number of control points: " <<
filter->GetNumberOfControlPoints() << std::endl;
std::cout << "Current number of control points: " <<
filter->GetCurrentNumberOfControlPoints() << std::endl;
std::cout << "Number of levels: " <<
filter->GetNumberOfLevels() << std::endl;
std::cout << "Close dimension: " <<
filter->GetCloseDimension() << std::endl;
std::cout << "Spline order: " << filter->GetSplineOrder() << std::endl;
// Write the output to an image.
typedef itk::Image<RealType, ParametricDimension> RealImageType;
RealImageType::Pointer image = RealImageType::New();
image->SetRegions( reader->GetOutput()->GetLargestPossibleRegion() );
image->Allocate();
itk::ImageRegionIteratorWithIndex<RealImageType>
Itt( image, image->GetLargestPossibleRegion() );
for ( Itt.GoToBegin(); !Itt.IsAtEnd(); ++Itt )
{
Itt.Set( outputImage->GetPixel( Itt.GetIndex() )[0] );
}
typedef itk::ImageFileWriter<RealImageType> WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetInput( image );
writer->SetFileName( argv[2] );
writer->Update();
return EXIT_SUCCESS;
}
|