1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkAdaptiveHistogramEqualizationImageFilter_hxx
#define __itkAdaptiveHistogramEqualizationImageFilter_hxx
#include <map>
#include <set>
#include "vnl/vnl_math.h"
#include "itkAdaptiveHistogramEqualizationImageFilter.h"
#include "itkImageRegionIterator.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkConstNeighborhoodIterator.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkProgressReporter.h"
namespace itk
{
template< typename TImageType >
float
AdaptiveHistogramEqualizationImageFilter< TImageType >
::CumulativeFunction(float u, float v)
{
// Calculate cumulative function
float s, ad;
s = vnl_math_sgn(u - v);
ad = vnl_math_abs( 2.0 * ( u - v ) );
return 0.5 *s *std::pow(ad, m_Alpha) - m_Beta * 0.5 * s * ad + m_Beta * u;
}
template< typename TImageType >
void
AdaptiveHistogramEqualizationImageFilter< TImageType >
::GenerateData()
{
typename ImageType::ConstPointer input = this->GetInput();
typename ImageType::Pointer output = this->GetOutput();
// Allocate the output
this->AllocateOutputs();
unsigned int i;
//Set the kernel value of PLAHE algorithm
float kernel = 1;
for ( i = 0; i < ImageDimension; i++ )
{
kernel = kernel * ( 2 * this->GetRadius()[i] + 1 );
}
kernel = 1 / kernel;
// Iterator which traverse the input
ImageRegionConstIterator< ImageType > itInput( input,
input->GetRequestedRegion() );
// Calculate min and max gray level of an input image
double min = static_cast< double >( itInput.Get() );
double max = min;
double value;
while ( !itInput.IsAtEnd() )
{
value = static_cast< double >( itInput.Get() );
if ( min > value )
{
min = value;
}
if ( max < value )
{
max = value;
}
++itInput;
}
// Allocate a float type image which has the same size with an input image.
// This image store normalized pixel values [-0.5 0.5] of the input image.
typedef Image< float, ImageDimension > ImageFloatType;
typename ImageFloatType::Pointer inputFloat = ImageFloatType::New();
inputFloat->SetRegions( input->GetRequestedRegion() );
inputFloat->Allocate();
// Scale factors to convert back and forth to the [-0.5, 0.5] and
// original gray level range
float iscale = max - min;
float scale = (float)1 / iscale;
// Normalize input image to [-0.5 0.5] gray level and store in
// inputFloat. AdaptiveHistogramEqualization only use float type
// image which has gray range [-0.5 0.5]
ImageRegionIterator< ImageFloatType > itFloat( inputFloat,
input->GetRequestedRegion() );
itInput.GoToBegin(); // rewind the previous input iterator
while ( !itInput.IsAtEnd() )
{
itFloat.Set(scale * ( itInput.Get() - min ) - 0.5);
++itFloat;
++itInput;
}
// Calculate cumulative array which will store the value of
// cumulative function. During the AdaptiveHistogramEqualization
// process, cumulative function will not be calculated, instead the
// cumulative function will be pre-calculated and result will be
// stored in cumulative array. The cumulative array will be
// referenced during AdaptiveHistogramEqualization processing. This
// pre-calculation can reduce computation time even though this
// method uses a huge array. If the cumulative array can not be
// assigned, the cumulative function will be calculated each time.
//
//
bool cachedCumulative = false;
typedef std::set< float > FloatSetType;
FloatSetType row;
typedef std::map< std::pair< float, float >, float > ArrayMapType;
ArrayMapType CumulativeArray;
if ( m_UseLookupTable )
{
// determine what intensities are used on the input
itFloat.GoToBegin(); // rewind the iterator for the normalized image
while ( !itFloat.IsAtEnd() )
{
row.insert( itFloat.Get() );
++itFloat;
}
// only cache the array if it can be done without taking too much space
if ( row.size() < ( input->GetRequestedRegion().GetNumberOfPixels() / 10 ) )
{
cachedCumulative = true;
}
else
{
cachedCumulative = false;
row.clear();
}
if ( cachedCumulative )
{
// calculate cumulative function for each possible pairing of
// intensities and store result in cumulative array
FloatSetType::iterator itU, itV;
ArrayMapType::key_type key;
for ( itU = row.begin(); itU != row.end(); ++itU )
{
key.first = *itU;
for ( itV = row.begin(); itV != row.end(); ++itV )
{
key.second = *itV;
CumulativeArray.insert( ArrayMapType::value_type( key,
this->CumulativeFunction(*itU, *itV) ) );
}
}
}
}
// Setup for processing the image
//
ZeroFluxNeumannBoundaryCondition< ImageFloatType > nbc;
ConstNeighborhoodIterator< ImageFloatType > bit;
// Find the data-set boundary "faces"
typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator< ImageFloatType >::FaceListType faceList;
NeighborhoodAlgorithm::ImageBoundaryFacesCalculator< ImageFloatType > bC;
faceList = bC( inputFloat, output->GetRequestedRegion(), this->GetRadius() );
typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator< ImageFloatType >::FaceListType::iterator fit;
// Map stores (number of pixel)/(window size) for each gray value.
typedef std::map< float, float > MapType;
MapType count;
MapType::iterator itMap;
ProgressReporter progress( this, 0, output->GetRequestedRegion().GetNumberOfPixels() );
// Process each faces. These are N-d regions which border
// the edge of the buffer.
for ( fit = faceList.begin(); fit != faceList.end(); ++fit )
{
// Create a neighborhood iterator for the normalized image for the
// region for this face
bit = ConstNeighborhoodIterator< ImageFloatType >(this->GetRadius(),
inputFloat, *fit);
bit.OverrideBoundaryCondition(&nbc);
bit.GoToBegin();
unsigned int neighborhoodSize = bit.Size();
// iterator for the output for this face
ImageRegionIterator< ImageType > itOut(output, *fit);
// iterate over the region for this face
ArrayMapType::key_type key;
while ( !bit.IsAtEnd() )
{
// AdaptiveHistogramEqualization algorithm
//
//
float f;
float sum;
// "Histogram the window"
count.clear();
for ( i = 0; i < neighborhoodSize; ++i )
{
f = bit.GetPixel(i);
itMap = count.find(f);
if ( itMap != count.end() )
{
count[f] = count[f] + kernel;
}
else
{
count.insert( MapType::value_type(f, kernel) );
}
}
typedef typename ImageType::PixelType PixelType;
// if we cached the cumulative array
// if not, use CumulativeFunction()
if ( cachedCumulative )
{
sum = 0;
itMap = count.begin();
f = bit.GetCenterPixel();
key.first = f;
while ( itMap != count.end() )
{
key.second = itMap->first;
sum = sum
+ itMap->second * CumulativeArray[key];
++itMap;
}
itOut.Set( (PixelType)( iscale * ( sum + 0.5 ) + min ) );
}
else
{
sum = 0;
itMap = count.begin();
f = bit.GetCenterPixel();
while ( itMap != count.end() )
{
sum = sum + itMap->second *CumulativeFunction(f, itMap->first);
++itMap;
}
itOut.Set( (PixelType)( iscale * ( sum + 0.5 ) + min ) );
}
// move the neighborhood
++bit;
++itOut;
progress.CompletedPixel();
}
}
}
template< typename TImageType >
void
AdaptiveHistogramEqualizationImageFilter< TImageType >
::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << "Alpha: " << m_Alpha << std::endl;
os << "Beta: " << m_Beta << std::endl;
os << "UseLookupTable: " << ( m_UseLookupTable ? "On" : "Off" ) << std::endl;
}
} // end namespace
#endif
|