File: itkCovariantVector.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (309 lines) | stat: -rw-r--r-- 9,796 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkCovariantVector_h
#define itkCovariantVector_h

#include "itkIndent.h"
#include "itkVector.h"
#include "vnl/vnl_vector_ref.h"

namespace itk
{
/**
 * \class CovariantVector
 * \brief A templated class holding a n-Dimensional covariant vector.
 *
 * CovariantVector is a templated class that holds a single vector
 * (i.e., an array of values).  CovariantVector can be used as the data
 * type held at each pixel in an Image or at each vertex of an Mesh.
 * The template parameter T can be any data type that behaves like a
 * primitive (or atomic) data type (int, short, float, complex).
 * The VVectorDimension defines the number of components in the vector array.
 *
 * CovariantVector is not a dynamically extendible array like std::vector. It is
 * intended to be used like a mathematical vector.
 *
 * If you wish a simpler pixel types, you can use Scalar, which represents
 * a single data value at a pixel. There is also the more complex type
 * ScalarCovariantVector, which supports (for a given pixel)
 * a single scalar value plus an array of vector values.
 * (The scalar and vectors can be of different data type.)
 *
 * CovariantVector is the type that should be used for representing normals
 * to surfaces and gradients of functions. AffineTransform transform
 * covariant vectors different than vectors.
 *
 * \ingroup Geometry
 * \ingroup DataRepresentation
 *
 * \sa Image
 * \sa Mesh
 * \sa Point
 * \sa Vector
 * \sa Matrix
 * \ingroup ITKCommon
 *
 * \sphinx
 * \sphinxexample{Core/Common/CreateACovariantVector,Create a CovariantVector}
 * \sphinxexample{Core/Common/CovariantVectorNorm,Covariant Vector Norm}
 * \sphinxexample{Core/Common/CovariantVectorDotProduct, Covariant Vector Dot Product}
 * \endsphinx
 */

template <typename T, unsigned int VVectorDimension = 3>
class ITK_TEMPLATE_EXPORT CovariantVector : public FixedArray<T, VVectorDimension>
{
public:
  /** Standard class type aliases. */
  using Self = CovariantVector;
  using Superclass = FixedArray<T, VVectorDimension>;

  /** ValueType can be used to declare a variable that is the same type
   * as a data element held in an CovariantVector.   */
  using ValueType = T;
  using RealValueType = typename NumericTraits<ValueType>::RealType;

  /** Component value type */
  using ComponentType = T;

  /** Dimension of the Space */
  static constexpr unsigned int Dimension = VVectorDimension;

  /** I am a covariant vector. */
  using CovariantVectorType = Self;

  /** The Array type from which this CovariantVector is derived. */
  using BaseArray = FixedArray<T, VVectorDimension>;

  /** Get the dimension (size) of the vector. */
  static unsigned int
  GetCovariantVectorDimension()
  {
    return VVectorDimension;
  }

  /** Set a vnl_vector_ref referencing the same memory block. */
  void
  SetVnlVector(const vnl_vector<T> &);

  /** Get a vnl_vector_ref referencing the same memory block. */
  vnl_vector_ref<T>
  GetVnlVector();

  /** Get a vnl_vector with a copy of the internal memory block. */
  vnl_vector<T>
  GetVnlVector() const;

  /** Default-constructor.
   * \note The other five "special member functions" are defaulted implicitly, following the C++ "Rule of Zero". */
  CovariantVector() = default;

  /**
   * Constructor to initialize entire vector to one value.
   */
  explicit CovariantVector(const ValueType & r);

  /** Pass-through constructor for the Array base class. Implicit casting is
   * performed to initialize constructor from any another one of datatype. */
  template <typename TVectorValueType>
  CovariantVector(const CovariantVector<TVectorValueType, VVectorDimension> & r)
    : BaseArray(r)
  {}
  CovariantVector(const ValueType r[Dimension])
    : BaseArray(r)
  {}

  /** Assignment operator with implicit casting from another data type */
  template <typename TCovariantVectorValueType>
  Self &
  operator=(const CovariantVector<TCovariantVectorValueType, VVectorDimension> & r)
  {
    BaseArray::operator=(r);
    return *this;
  }

  /** Pass-through assignment operator for the Array base class. */
  CovariantVector &
  operator=(const ValueType r[VVectorDimension]);

  /** Scalar operator*=.  Scales elements by a scalar. */
  template <typename Tt>
  inline const Self &
  operator*=(const Tt & value)
  {
    for (unsigned int i = 0; i < VVectorDimension; ++i)
    {
      (*this)[i] = static_cast<ValueType>((*this)[i] * value);
    }
    return *this;
  }

  /** Scalar operator/=.  Scales (divides) elements by a scalar. */
  template <typename Tt>
  const Self &
  operator/=(const Tt & value)
  {
    for (unsigned int i = 0; i < VVectorDimension; ++i)
    {
      (*this)[i] = static_cast<ValueType>((*this)[i] / value);
    }
    return *this;
  }

  /** CovariantVector operator+=.  Adds a vectors to the current vector. */
  const Self &
  operator+=(const Self & vec);

  /** CovariantVector operator-=.  Subtracts a vector from a current vector. */
  const Self &
  operator-=(const Self & vec);

  /** CovariantVector negation.  Negate all the elements of a vector.
   *  Return a new vector */
  Self
  operator-() const;

  /** CovariantVector addition. Add two vectors. Return a new vector. */
  Self
  operator+(const Self & vec) const;

  /** CovariantVector subtraction. Subtract two vectors. Return a new vector. */
  Self
  operator-(const Self & vec) const;

  /** CovariantVector operator*.
   * Performs the inner product of two covariant vectors.
   * \warning This is equivalent to the scalar product only if the reference
   * system has orthogonal axis and equal scales.  */
  ValueType operator*(const Self & other) const;

  /** operator*.  Performs the scalar product with a vector (contravariant).
   * This scalar product is invariant under affine transformations */
  ValueType operator*(const Vector<T, VVectorDimension> & other) const;

  /** Scalar operator*. Scale the elements of a vector by a scalar.
   * Return a new vector. */
  inline Self operator*(const ValueType & val) const
  {
    Self result;

    for (unsigned int i = 0; i < VVectorDimension; ++i)
    {
      result[i] = static_cast<ValueType>((*this)[i] * val);
    }
    return result;
  }

  /** Scalar operator/. Scale (divide) the elements of a vector by a scalar.
   * Return a new vector. */
  template <typename Tt>
  inline Self
  operator/(const Tt & val) const
  {
    Self result;

    for (unsigned int i = 0; i < VVectorDimension; ++i)
    {
      result[i] = static_cast<ValueType>((*this)[i] / val);
    }
    return result;
  }

  /** Returns the Euclidean Norm of the vector  */
  RealValueType
  GetNorm() const;

  /** Returns the number of components in this vector type */
  static unsigned int
  GetNumberOfComponents()
  {
    return VVectorDimension;
  }

  /** Divides the covariant vector components by the norm and return the norm */
  RealValueType
  Normalize();

  /** Returns vector's Squared Euclidean Norm  */
  RealValueType
  GetSquaredNorm() const;

  /** Copy from another CovariantVector with a different representation type.
   *  Casting is done with C-Like rules  */
  template <typename TCoordRepB>
  void
  CastFrom(const CovariantVector<TCoordRepB, VVectorDimension> & pa)
  {
    for (unsigned int i = 0; i < VVectorDimension; ++i)
    {
      (*this)[i] = static_cast<T>(pa[i]);
    }
  }
};

/** Premultiply Operator for product of a vector and a scalar.
 *  CovariantVector< T, N >  =  T * CovariantVector< T,N > */
template <typename T, unsigned int VVectorDimension>
inline CovariantVector<T, VVectorDimension> operator*(const T & scalar, const CovariantVector<T, VVectorDimension> & v)
{
  return v.operator*(scalar);
}

/** Performs the scalar product of a covariant with a contravariant.
 * This scalar product is invariant under affine transformations */
template <typename T, unsigned int VVectorDimension>
inline T operator*(const Vector<T, VVectorDimension> &          contravariant,
                   const CovariantVector<T, VVectorDimension> & covariant)
{
  return covariant.operator*(contravariant);
}

ITKCommon_EXPORT void
CrossProduct(CovariantVector<double, 3> &, const Vector<double, 3> &, const Vector<double, 3> &);

ITKCommon_EXPORT void
CrossProduct(CovariantVector<float, 3> &, const Vector<float, 3> &, const Vector<float, 3> &);

ITKCommon_EXPORT void
CrossProduct(CovariantVector<int, 3>, const Vector<int, 3> &, const Vector<int, 3> &);


template <typename T, unsigned int VVectorDimension>
inline void
swap(CovariantVector<T, VVectorDimension> & a, CovariantVector<T, VVectorDimension> & b)
{
  a.swap(b);
}

} // end namespace itk

//
// Numeric traits must be included after (optionally) including the explicit
// instantiations control of this class, in case the implicit instantiation
// needs to be disabled.
//
// NumericTraits must be included before (optionally) including the .hxx file,
// in case the .hxx requires to use NumericTraits.
//
#include "itkNumericTraitsCovariantVectorPixel.h"

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkCovariantVector.hxx"
#endif

#endif