1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkDerivativeOperator_h
#define itkDerivativeOperator_h
#include "itkNeighborhoodOperator.h"
namespace itk
{
/**
* \class DerivativeOperator
* \brief A NeighborhoodOperator for taking an n-th order derivative
* at a pixel
*
* DerivativeOperator's coefficients are a tightest-fitting convolution
* kernel for calculating the n-th order directional derivative at a pixel.
* DerivativeOperator is a directional NeighborhoodOperator that should be
* applied to a Neighborhood or NeighborhoodPointer using the inner product
* method.
*
* An example operator to compute X derivatives of a 2D image can be
* created with:
\code
using DerivativeOperatorType = itk::DerivativeOperator<float, 2>;
DerivativeOperatorType derivativeOperator;
derivativeOperator.SetDirection(0); // X dimension
itk::Size<2> radius;
radius.Fill(1); // A radius of 1 in both dimensions is a 3x3 operator
derivativeOperator.CreateToRadius(radius);
\endcode
* and creates a kernel that looks like:
\code
0 0 0
0.5 0 -0.5
0 0 0
\endcode
*
* \note DerivativeOperator does not have any user-declared "special member function",
* following the C++ Rule of Zero: the compiler will generate them if necessary.
*
* \sa NeighborhoodOperator
* \sa Neighborhood
* \sa ForwardDifferenceOperator
* \sa BackwardDifferenceOperator
*
* \ingroup Operators
* \ingroup ITKCommon
*
* \sphinx
* \sphinxexample{Core/Common/CreateDerivativeKernel,Create Derivative Kernel}
* \endsphinx
*/
template <typename TPixel, unsigned int VDimension = 2, typename TAllocator = NeighborhoodAllocator<TPixel>>
class ITK_TEMPLATE_EXPORT DerivativeOperator : public NeighborhoodOperator<TPixel, VDimension, TAllocator>
{
public:
/** Standard class type aliases. */
using Self = DerivativeOperator;
using Superclass = NeighborhoodOperator<TPixel, VDimension, TAllocator>;
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(DerivativeOperator);
/** Type alias support for pixel real type.*/
using typename Superclass::PixelRealType;
/** Sets the order of the derivative. */
void
SetOrder(const unsigned int order)
{
this->m_Order = order;
}
/** Returns the order of the derivative. */
unsigned int
GetOrder() const
{
return m_Order;
}
void
PrintSelf(std::ostream & os, Indent indent) const override
{
Superclass::PrintSelf(os, indent);
os << indent << "Order: " << m_Order << std::endl;
}
protected:
/** Type alias support for coefficient vector type.*/
using typename Superclass::CoefficientVector;
/** Calculates operator coefficients. */
CoefficientVector
GenerateCoefficients() override;
/** Arranges coefficients spatially in the memory buffer. */
void
Fill(const CoefficientVector & coeff) override
{
Superclass::FillCenteredDirectional(coeff);
}
private:
/** Order of the derivative. */
unsigned int m_Order{ 1 };
};
} // namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkDerivativeOperator.hxx"
#endif
#endif
|