1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkDiffusionTensor3D_hxx
#define itkDiffusionTensor3D_hxx
#include "itkNumericTraits.h"
namespace itk
{
template <typename T>
DiffusionTensor3D<T>::DiffusionTensor3D(const Superclass & r)
: SymmetricSecondRankTensor<T, 3>(r)
{}
template <typename T>
DiffusionTensor3D<T>::DiffusionTensor3D(const ComponentType & r)
: SymmetricSecondRankTensor<T, 3>(r)
{}
template <typename T>
DiffusionTensor3D<T>::DiffusionTensor3D(const ComponentArrayType r)
: SymmetricSecondRankTensor<T, 3>(r)
{}
template <typename T>
DiffusionTensor3D<T> &
DiffusionTensor3D<T>::operator=(const ComponentType & r)
{
Superclass::operator=(r);
return *this;
}
template <typename T>
DiffusionTensor3D<T> &
DiffusionTensor3D<T>::operator=(const ComponentArrayType r)
{
Superclass::operator=(r);
return *this;
}
template <typename T>
DiffusionTensor3D<T> &
DiffusionTensor3D<T>::operator=(const Superclass & r)
{
Superclass::operator=(r);
return *this;
}
template <typename T>
auto
DiffusionTensor3D<T>::GetTrace() const -> AccumulateValueType
{
AccumulateValueType trace = (*this)[0];
trace += (*this)[3];
trace += (*this)[5];
return trace;
}
template <typename T>
auto
DiffusionTensor3D<T>::GetFractionalAnisotropy() const -> RealValueType
{
// Computed as
// FA = std::sqrt(1.5*sum(sum(N.*N))/sum((sum(D.*D))))
// where N = D - ((1/3)*trace(D)*eye(3,3))
// equation (28) in
// http://lmi.bwh.harvard.edu/papers/pdfs/2002/westinMEDIA02.pdf
const RealValueType isp = this->GetInnerScalarProduct();
if (isp > 0.0)
{
const RealValueType trace = this->GetTrace();
const RealValueType anisotropy = 3.0 * isp - trace * trace;
// sometimes anisotropy has been reported to be a small negative
// number, and then std::sqrt returns NaN. If it is a small
// negative number, the obvious thing is to round to zero. If
// it is a larger negative number, I'm not sure what the proper
// result would be. In either case, returning zero makes as much
// sense in those cases as any other number.
if (anisotropy > 0.0)
{
const auto fractionalAnisotropy = static_cast<RealValueType>(std::sqrt(anisotropy / (2.0 * isp)));
return fractionalAnisotropy;
}
}
return 0.0;
}
template <typename T>
auto
DiffusionTensor3D<T>::GetRelativeAnisotropy() const -> RealValueType
{
const RealValueType trace = this->GetTrace();
const RealValueType isp = this->GetInnerScalarProduct();
// Avoid negative trace and traces small enough to look like a division by
// zero.
if (trace < NumericTraits<RealValueType>::min())
{
return RealValueType{};
}
const RealValueType anisotropy = 3.0 * isp - trace * trace;
if (anisotropy < RealValueType{})
{
return RealValueType{};
}
const auto relativeAnisotropySquared = static_cast<RealValueType>(anisotropy / (std::sqrt(3.0) * trace));
const auto relativeAnisotropy = static_cast<RealValueType>(std::sqrt(relativeAnisotropySquared));
return relativeAnisotropy;
}
template <typename T>
auto
DiffusionTensor3D<T>::GetInnerScalarProduct() const -> RealValueType
{
const RealValueType xx = (*this)[0];
const RealValueType xy = (*this)[1];
const RealValueType xz = (*this)[2];
const RealValueType yy = (*this)[3];
const RealValueType yz = (*this)[4];
const RealValueType zz = (*this)[5];
return (xx * xx + yy * yy + zz * zz + 2.0 * (xy * xy + xz * xz + yz * yz));
}
} // end namespace itk
#endif
|