File: itkDiffusionTensor3D.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (150 lines) | stat: -rw-r--r-- 4,209 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkDiffusionTensor3D_hxx
#define itkDiffusionTensor3D_hxx

#include "itkNumericTraits.h"

namespace itk
{

template <typename T>
DiffusionTensor3D<T>::DiffusionTensor3D(const Superclass & r)
  : SymmetricSecondRankTensor<T, 3>(r)
{}

template <typename T>
DiffusionTensor3D<T>::DiffusionTensor3D(const ComponentType & r)
  : SymmetricSecondRankTensor<T, 3>(r)
{}

template <typename T>
DiffusionTensor3D<T>::DiffusionTensor3D(const ComponentArrayType r)
  : SymmetricSecondRankTensor<T, 3>(r)
{}

template <typename T>
DiffusionTensor3D<T> &
DiffusionTensor3D<T>::operator=(const ComponentType & r)
{
  Superclass::operator=(r);
  return *this;
}

template <typename T>
DiffusionTensor3D<T> &
DiffusionTensor3D<T>::operator=(const ComponentArrayType r)
{
  Superclass::operator=(r);
  return *this;
}

template <typename T>
DiffusionTensor3D<T> &
DiffusionTensor3D<T>::operator=(const Superclass & r)
{
  Superclass::operator=(r);
  return *this;
}

template <typename T>
auto
DiffusionTensor3D<T>::GetTrace() const -> AccumulateValueType
{
  AccumulateValueType trace = (*this)[0];

  trace += (*this)[3];
  trace += (*this)[5];
  return trace;
}

template <typename T>
auto
DiffusionTensor3D<T>::GetFractionalAnisotropy() const -> RealValueType
{
  // Computed as
  // FA = std::sqrt(1.5*sum(sum(N.*N))/sum((sum(D.*D))))
  // where N = D - ((1/3)*trace(D)*eye(3,3))
  // equation (28) in
  // http://lmi.bwh.harvard.edu/papers/pdfs/2002/westinMEDIA02.pdf
  const RealValueType isp = this->GetInnerScalarProduct();

  if (isp > 0.0)
  {
    const RealValueType trace = this->GetTrace();
    const RealValueType anisotropy = 3.0 * isp - trace * trace;
    // sometimes anisotropy has been reported to be a small negative
    // number, and then std::sqrt returns NaN.  If it is a small
    // negative number, the obvious thing is to round to zero. If
    // it is a larger negative number, I'm not sure what the proper
    // result would be.  In either case, returning zero makes as much
    // sense in those cases as any other number.
    if (anisotropy > 0.0)
    {
      const auto fractionalAnisotropy = static_cast<RealValueType>(std::sqrt(anisotropy / (2.0 * isp)));
      return fractionalAnisotropy;
    }
  }

  return 0.0;
}

template <typename T>
auto
DiffusionTensor3D<T>::GetRelativeAnisotropy() const -> RealValueType
{
  const RealValueType trace = this->GetTrace();
  const RealValueType isp = this->GetInnerScalarProduct();

  // Avoid negative trace and traces small enough to look like a division by
  // zero.
  if (trace < NumericTraits<RealValueType>::min())
  {
    return RealValueType{};
  }

  const RealValueType anisotropy = 3.0 * isp - trace * trace;

  if (anisotropy < RealValueType{})
  {
    return RealValueType{};
  }

  const auto relativeAnisotropySquared = static_cast<RealValueType>(anisotropy / (std::sqrt(3.0) * trace));

  const auto relativeAnisotropy = static_cast<RealValueType>(std::sqrt(relativeAnisotropySquared));

  return relativeAnisotropy;
}

template <typename T>
auto
DiffusionTensor3D<T>::GetInnerScalarProduct() const -> RealValueType
{
  const RealValueType xx = (*this)[0];
  const RealValueType xy = (*this)[1];
  const RealValueType xz = (*this)[2];
  const RealValueType yy = (*this)[3];
  const RealValueType yz = (*this)[4];
  const RealValueType zz = (*this)[5];

  return (xx * xx + yy * yy + zz * zz + 2.0 * (xy * xy + xz * xz + yz * yz));
}
} // end namespace itk

#endif