File: itkImageAlgorithm.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (301 lines) | stat: -rw-r--r-- 11,832 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkImageAlgorithm_hxx
#define itkImageAlgorithm_hxx

#include "itkArray.h"
#include "itkImageRegionIterator.h"
#include "itkImageScanlineIterator.h"


namespace itk
{

template <typename InputImageType, typename OutputImageType>
void
ImageAlgorithm::DispatchedCopy(const InputImageType *                       inImage,
                               OutputImageType *                            outImage,
                               const typename InputImageType::RegionType &  inRegion,
                               const typename OutputImageType::RegionType & outRegion,
                               FalseType)
{
  if (inRegion.GetSize()[0] == outRegion.GetSize()[0])
  {
    itk::ImageScanlineConstIterator it(inImage, inRegion);
    itk::ImageScanlineIterator      ot(outImage, outRegion);

    while (!it.IsAtEnd())
    {
      while (!it.IsAtEndOfLine())
      {
        ot.Set(static_cast<typename OutputImageType::PixelType>(it.Get()));
        ++ot;
        ++it;
      }
      ot.NextLine();
      it.NextLine();
    }
    return;
  }

  itk::ImageRegionConstIterator<InputImageType> it(inImage, inRegion);
  itk::ImageRegionIterator<OutputImageType>     ot(outImage, outRegion);

  while (!it.IsAtEnd())
  {
    ot.Set(static_cast<typename OutputImageType::PixelType>(it.Get()));
    ++ot;
    ++it;
  }
}

template <typename InputImageType, typename OutputImageType>
void
ImageAlgorithm::DispatchedCopy(const InputImageType *                       inImage,
                               OutputImageType *                            outImage,
                               const typename InputImageType::RegionType &  inRegion,
                               const typename OutputImageType::RegionType & outRegion,
                               TrueType)
{
  using _RegionType = typename InputImageType::RegionType;
  using _IndexType = typename InputImageType::IndexType;

  // Get the number of bytes of each pixel in the buffer.
  const size_t NumberOfInternalComponents = ImageAlgorithm::PixelSize<InputImageType>::Get(inImage);

  // We wish to copy whole lines, otherwise just use the basic implementation.
  // Check that the number of internal components match
  if (inRegion.GetSize()[0] != outRegion.GetSize()[0] ||
      NumberOfInternalComponents != ImageAlgorithm::PixelSize<OutputImageType>::Get(outImage))
  {
    ImageAlgorithm::DispatchedCopy<InputImageType, OutputImageType>(inImage, outImage, inRegion, outRegion);
    return;
  }

  const typename InputImageType::InternalPixelType * in = inImage->GetBufferPointer();
  typename OutputImageType::InternalPixelType *      out = outImage->GetBufferPointer();

  const _RegionType & inBufferedRegion = inImage->GetBufferedRegion();
  const _RegionType & outBufferedRegion = outImage->GetBufferedRegion();

  // Compute the number of continuous pixel which can be copied.
  size_t       numberOfPixel = 1;
  unsigned int movingDirection = 0;
  do
  {
    numberOfPixel *= inRegion.GetSize(movingDirection);
    ++movingDirection;
  }
  // The copy regions must extend to the full buffered region, to
  // ensure continuity of pixels between dimensions.
  while (movingDirection < _RegionType::ImageDimension &&
         inRegion.GetSize(movingDirection - 1) == inBufferedRegion.GetSize(movingDirection - 1) &&
         outRegion.GetSize(movingDirection - 1) == outBufferedRegion.GetSize(movingDirection - 1) &&
         inBufferedRegion.GetSize(movingDirection - 1) == outBufferedRegion.GetSize(movingDirection - 1));

  const size_t sizeOfChunkInInternalComponents = numberOfPixel * NumberOfInternalComponents;

  _IndexType inCurrentIndex = inRegion.GetIndex();
  _IndexType outCurrentIndex = outRegion.GetIndex();

  while (inRegion.IsInside(inCurrentIndex))
  {
    size_t inOffset = 0; // in pixels
    size_t outOffset = 0;

    size_t inSubDimensionQuantity = 1; // in pixels
    size_t outSubDimensionQuantity = 1;

    for (unsigned int i = 0; i < _RegionType::ImageDimension; ++i)
    {
      inOffset += inSubDimensionQuantity * static_cast<size_t>(inCurrentIndex[i] - inBufferedRegion.GetIndex(i));
      inSubDimensionQuantity *= inBufferedRegion.GetSize(i);

      outOffset += outSubDimensionQuantity * static_cast<size_t>(outCurrentIndex[i] - outBufferedRegion.GetIndex(i));
      outSubDimensionQuantity *= outBufferedRegion.GetSize(i);
    }

    const typename InputImageType::InternalPixelType * inBuffer = in + inOffset * NumberOfInternalComponents;
    typename OutputImageType::InternalPixelType *      outBuffer = out + outOffset * NumberOfInternalComponents;

    CopyHelper(inBuffer, inBuffer + sizeOfChunkInInternalComponents, outBuffer);

    if (movingDirection == _RegionType::ImageDimension)
    {
      break;
    }

    // increment index to next chunk
    ++inCurrentIndex[movingDirection];
    for (unsigned int i = movingDirection; i + 1 < _RegionType::ImageDimension; ++i)
    {
      // When reaching the end of the moving index in the copy region
      // dimension, carry to higher dimensions.
      if (static_cast<SizeValueType>(inCurrentIndex[i] - inRegion.GetIndex(i)) >= inRegion.GetSize(i))
      {
        inCurrentIndex[i] = inRegion.GetIndex(i);
        ++inCurrentIndex[i + 1];
      }
    }

    // increment index to next chunk
    ++outCurrentIndex[movingDirection];
    for (unsigned int i = movingDirection; i + 1 < _RegionType::ImageDimension; ++i)
    {
      if (static_cast<SizeValueType>(outCurrentIndex[i] - outRegion.GetIndex(i)) >= outRegion.GetSize(i))
      {
        outCurrentIndex[i] = outRegion.GetIndex(i);
        ++outCurrentIndex[i + 1];
      }
    }
  }
}


template <typename InputImageType, typename OutputImageType>
typename OutputImageType::RegionType
ImageAlgorithm::EnlargeRegionOverBox(const typename InputImageType::RegionType & inputRegion,
                                     const InputImageType *                      inputImage,
                                     const OutputImageType *                     outputImage)
{
  class DummyTransform
  {
  public:
    using PointType = Point<SpacePrecisionType, OutputImageType::ImageDimension>;
    PointType
    TransformPoint(const PointType & p) const
    {
      return p;
    }
  };
  return EnlargeRegionOverBox<InputImageType, OutputImageType, DummyTransform>(
    inputRegion, inputImage, outputImage, nullptr);
}

template <typename InputImageType, typename OutputImageType, typename TransformType>
typename OutputImageType::RegionType
ImageAlgorithm::EnlargeRegionOverBox(const typename InputImageType::RegionType & inputRegion,
                                     const InputImageType *                      inputImage,
                                     const OutputImageType *                     outputImage,
                                     const TransformType *                       transform)
{
  typename OutputImageType::RegionType outputRegion;

  // Get the index of the corners of the input region, map them to input physical space.
  // Convert input physical corners to output physical corners using transform
  // and finally map output physical corners to index of output image.
  // The input region has 2^ImageDimension corners, each
  // of which is either on the inferior or superior edge
  // along each dimension.
  unsigned int numberOfInputCorners = 1;
  for (unsigned int dim = 0; dim < InputImageType::ImageDimension; ++dim)
  {
    numberOfInputCorners *= 2;
  }
  using ContinuousIndexValueType = double;
  using ContinuousInputIndexType = ContinuousIndex<ContinuousIndexValueType, InputImageType::ImageDimension>;
  using ContinuousOutputIndexType = ContinuousIndex<ContinuousIndexValueType, OutputImageType::ImageDimension>;

  std::vector<ContinuousOutputIndexType> outputCorners(numberOfInputCorners);


  for (unsigned int count = 0; count < numberOfInputCorners; ++count)
  {
    ContinuousInputIndexType currentInputCornerIndex;
    currentInputCornerIndex.Fill(0);
    unsigned int localCount = count;

    // For each dimension, set the current index to either
    // the highest or lowest index along this dimension.
    // Since we need all the space covered by the input image to
    // be taken into account, including the half-pixel border,
    // we start half a pixel before index 0 and stop half a pixel
    // after size
    for (unsigned int dim = 0; dim < InputImageType::ImageDimension; ++dim)
    {
      if (localCount % 2)
      {
        currentInputCornerIndex[dim] = inputRegion.GetIndex(dim) + inputRegion.GetSize(dim) + 0.5;
      }
      else
      {
        currentInputCornerIndex[dim] = inputRegion.GetIndex(dim) - 0.5;
      }

      localCount /= 2;
    }

    using InputPointType = Point<SpacePrecisionType, InputImageType::ImageDimension>;
    using OutputPointType = Point<SpacePrecisionType, OutputImageType::ImageDimension>;
    InputPointType  inputPoint;
    OutputPointType outputPoint;
    inputImage->TransformContinuousIndexToPhysicalPoint(currentInputCornerIndex, inputPoint);
    if (transform != nullptr)
    {
      outputPoint = transform->TransformPoint(inputPoint);
    }
    else
    {
      // if InputDimension < OutputDimension then embed point in Output space.
      // else if InputDimension == OutputDimension copy the points.
      // else if InputDimension > OutputDimension project the point to first N-Dimensions of Output space.
      outputPoint.Fill(0.0);
      for (unsigned int d = 0; d < std::min(inputPoint.GetPointDimension(), outputPoint.GetPointDimension()); ++d)
      {
        outputPoint[d] = inputPoint[d];
      }
    }
    outputCorners[count] =
      outputImage->template TransformPhysicalPointToContinuousIndex<ContinuousIndexValueType>(outputPoint);
  }

  // Compute a rectangular region from the vector of corner indexes
  for (unsigned int dim = 0; dim < OutputImageType::ImageDimension; ++dim)
  {
    // Initialize index to the highest possible value
    outputRegion.SetIndex(dim, NumericTraits<IndexValueType>::max());

    // For each dimension, set the output index to the minimum
    // of the corners' indexes, and the output size to their maximum
    for (unsigned int count = 0; count < numberOfInputCorners; ++count)
    {
      auto continuousIndexFloor = Math::Floor<IndexValueType>(outputCorners[count][dim]);
      if (continuousIndexFloor < outputRegion.GetIndex(dim))
      {
        outputRegion.SetIndex(dim, continuousIndexFloor);
      }
      auto continuousIndexCeil = Math::Ceil<IndexValueType>(outputCorners[count][dim]);
      if (continuousIndexCeil > static_cast<IndexValueType>(outputRegion.GetSize(dim)))
      {
        outputRegion.SetSize(dim, continuousIndexCeil);
      }
    }

    // The size is actually the difference between maximum and minimum index,
    // so subtract the index
    outputRegion.SetSize(dim, outputRegion.GetSize(dim) - outputRegion.GetIndex(dim));
  }

  // Make sure this region remains contained in the LargestPossibleRegion
  outputRegion.Crop(outputImage->GetLargestPossibleRegion());
  return outputRegion;
}

} // end namespace itk

#endif