1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkPoint_h
#define itkPoint_h
#include "itkNumericTraits.h"
#include "itkVector.h"
#include "vnl/vnl_vector_ref.h"
#include "itkMath.h"
namespace itk
{
/**
* \class Point
* \brief A templated class holding a geometric point in n-Dimensional space.
*
* Point is a templated class that holds a set of coordinates (components).
* Point can be used as the data type held at each pixel in
* an Image or at each vertex of an Mesh. The template parameter T can
* be any data type that behaves like a primitive (or atomic) data type (int,
* short, float, complex). The VPointDimension defines the number of
* components in the point array.
*
* \ingroup Geometry
* \ingroup DataRepresentation
*
* \sa Image \sa Mesh \sa Vector \sa CovariantVector \sa Matrix
* \ingroup ITKCommon
*
* \sphinx
* \sphinxexample{Core/Common/DistanceBetweenPoints,Distance between two points}
* \sphinxexample{Core/Common/DistanceBetweenIndices,Distance between two indices}
* \endsphinx
*/
template <typename TCoordRep, unsigned int VPointDimension = 3>
class ITK_TEMPLATE_EXPORT Point : public FixedArray<TCoordRep, VPointDimension>
{
public:
/** Standard class type aliases. */
using Self = Point;
using Superclass = FixedArray<TCoordRep, VPointDimension>;
/** ValueType can be used to declare a variable that is the same type
* as a data element held in an Point. */
using ValueType = TCoordRep;
using CoordinateType = TCoordRep;
using CoordRepType = CoordinateType;
using RealType = typename NumericTraits<ValueType>::RealType;
/** Dimension of the Space */
static constexpr unsigned int PointDimension = VPointDimension;
/** The Array type from which this Vector is derived. */
using BaseArray = FixedArray<TCoordRep, VPointDimension>;
using Iterator = typename BaseArray::Iterator;
using ConstIterator = typename BaseArray::ConstIterator;
/** Get the dimension (size) of the point. */
static unsigned int
GetPointDimension()
{
return VPointDimension;
}
/** VectorType define the difference between two Points */
using VectorType = Vector<ValueType, VPointDimension>;
/** Default-constructor.
* \note The other five "special member functions" are defaulted implicitly, following the C++ "Rule of Zero". */
Point() = default;
/** Pass-through constructors for different type points. */
template <typename TPointValueType>
Point(const Point<TPointValueType, VPointDimension> & r)
: BaseArray(r)
{}
/** Pass-through constructors for plain arrays. */
template <typename TPointValueType>
Point(const TPointValueType r[VPointDimension])
: BaseArray(r)
{}
Point(const ValueType r[VPointDimension])
: BaseArray(r)
{}
#if defined(ITK_LEGACY_REMOVE)
/** Prevents copy-initialization from `nullptr`, as well as from `0` (NULL). */
Point(std::nullptr_t) = delete;
/** Explicit constructors for single values */
template <typename TPointValueType>
explicit Point(const TPointValueType & v)
: BaseArray(v)
{}
explicit Point(const ValueType & v)
: BaseArray(v)
{}
#else
/** Pass-through constructors for single values
* \note ITK_LEGACY_REMOVE=ON will disallow implicit conversion from a single value. */
template <typename TPointValueType>
Point(const TPointValueType & v)
: BaseArray(v)
{}
Point(const ValueType & v)
: BaseArray(v)
{}
#endif
/** Explicit constructor for std::array. */
explicit Point(const std::array<ValueType, VPointDimension> & stdArray)
: BaseArray(stdArray)
{}
/** Pass-through assignment operator for a plain array. */
Point &
operator=(const ValueType r[VPointDimension]);
/** Compare two points for equality. */
bool
operator==(const Self & pt) const
{
return this->BaseArray::operator==(pt);
}
ITK_UNEQUAL_OPERATOR_MEMBER_FUNCTION(Self);
/** Point operator+=. Adds a vector to the current point. */
const Self &
operator+=(const VectorType & vec);
/** Point operator-=. Subtracts a vector from a current point. */
const Self &
operator-=(const VectorType & vec);
/** Computes the Vector difference between two points */
VectorType
operator-(const Self & pnt) const;
/** Add a vector to a point. Return a new point. */
Self
operator+(const VectorType & vec) const;
/** Subtract a vector from a point. Return a new point. */
Self
operator-(const VectorType & vec) const;
/** Access an element of a point. */
VectorType
GetVectorFromOrigin() const;
/** Get a vnl_vector_ref referencing the same memory block */
vnl_vector_ref<TCoordRep>
GetVnlVector();
/** Get a vnl_vector with a copy of the internal memory block. */
vnl_vector<TCoordRep>
GetVnlVector() const;
/** Set to median point between the two points
* given as arguments
*
* This method computes:
*
* \f[
* \overrightarrow{P}=\frac{(\overrightarrow{A}+\overrightarrow{B})}{2}
* \f]
*
* using the two Points given as arguments, and store the result in
* the Point on which the method is invoked. */
void
SetToMidPoint(const Self &, const Self &);
/** Set the current point to a barycentric combination of the two points
* given as arguments.
*
* \param A First point
* \param B Second point
* \param alpha Weight for the first point
*
* The first point is multiplied by \f$ \alpha \f$, the second is multiplied
* by * \f$ (1-\alpha) \f$, and the sum is stored in the Point on which the
* method is invoked.
*
* \f[
* \overrightarrow{P}=\alpha * \overrightarrow{A}+ (1-\alpha)*\overrightarrow{B}
* \f]
*
* If the value of \f$ \alpha \in [0,1] \f$, the resulting point will be placed
* in the line segment \f$ \overline{AB} \f$ joining \f$ \overrightarrow{A} \f$
* and \f$ \overrightarrow{A} \f$
*
* If the value of \f$ \alpha < 0 \f$ the resulting point will be placed outside
* the line segment \f$ \overline{AB} \f$ on the side of \f$ \overrightarrow{A} \f$.
*
* If the value of \f$ \alpha > 1 \f$ the resulting point will be placed outside
* the line segment \f$ \overline{AB} \f$ on the side of \f$ \overrightarrow{B} \f$.
*
* \sa SetToMedian */
void
SetToBarycentricCombination(const Self & A, const Self & B, double alpha);
/** Set the current point to a barycentric combination of three points
* Two values are expected to weight the contribution of the first two points,
* the weight of for the third point is computed to ensure that the three weights
* sum 1.
*
* This method computes:
*
* \f[
* \overrightarrow{P}= w_1 * \overrightarrow{P}_1
+ w_2 * \overrightarrow{P}_2
+ (1-w_1-w_2 ) * \overrightarrow{P}_3
* \f]
*
* If the two weight are \f$ \in [0,1] \f$ , The resulting point will always be placed
* inside the triangle formed by the three points given as arguments. */
void
SetToBarycentricCombination(const Self & A, const Self & B, const Self & C, double weightForA, double weightForB);
/** Set the current point to a barycentric combination of an array of N points
* An array of (N-1) values is expected to weight the contribution of the
* first (N-1) points, the weight of the Nth point is computed to ensure that
* the N weights sum 1.
*
* This method computes:
*
* \f[
* \overrightarrow{P}= \sum_{i=1}^{N-1} w_i * \overrightarrow{P}_i
+ \left(1- \sum_{i=1}^{N-1} w_i\right) * \overrightarrow{P}_N
* \f]
*/
void
SetToBarycentricCombination(const Self * P, const double * weights, unsigned int N);
/** Copy from another Point with a different representation type.
* Casting is done with C-Like rules */
template <typename TCoordRepB>
void
CastFrom(const Point<TCoordRepB, VPointDimension> & pa)
{
for (unsigned int i = 0; i < VPointDimension; ++i)
{
(*this)[i] = static_cast<TCoordRep>(pa[i]);
}
}
/** Compute the Squared Euclidean Distance from this point to another point
* with a different representation type. Casting is done with
* C-Like rules */
template <typename TCoordRepB>
RealType
SquaredEuclideanDistanceTo(const Point<TCoordRepB, VPointDimension> & pa) const
{
RealType sum{};
for (unsigned int i = 0; i < VPointDimension; ++i)
{
const auto component = static_cast<RealType>(pa[i]);
const RealType difference = static_cast<RealType>((*this)[i]) - component;
sum += difference * difference;
}
return sum;
}
/** Compute the Euclidean Distance from this point to another point
* with a different representation type. Casting is done with
* C-Like rules */
template <typename TCoordRepB>
RealType
EuclideanDistanceTo(const Point<TCoordRepB, VPointDimension> & pa) const
{
const double distance = std::sqrt(static_cast<double>(this->SquaredEuclideanDistanceTo(pa)));
return static_cast<RealType>(distance);
}
};
template <typename T, unsigned int VPointDimension>
std::ostream &
operator<<(std::ostream & os, const Point<T, VPointDimension> & vct);
template <typename T, unsigned int VPointDimension>
std::istream &
operator>>(std::istream & is, Point<T, VPointDimension> & vct);
/**
* \class BarycentricCombination
* \brief Computes the barycentric combination of an array of N points.
*
* This class computes the barycentric combination of an array of N points.
*
* An array of (N-1) values is expected to weight the contribution of the
* first (N-1) points, the weight of the Nth point is computed to ensure that
* the N weights sum 1.
*
* This method computes:
*
* \f[
* \overrightarrow{P}= \sum_{i=1}^{N-1} w_i * \overrightarrow{P}_i
* + \left(1- \sum_{i=1}^{N-1} w_i\right) * \overrightarrow{P}_N
* \f]
*
* The points are expected to be stored in an itkContainer class like
* itk::VectorContainer, responding to the Begin(), End(), Value() API.
*
* The weights are expected to be stored in any array-like container
* having a operator[i].
*
* \ingroup Geometry
* \ingroup ITKCommon
*/
template <typename TPointContainer, typename TWeightContainer>
class ITK_TEMPLATE_EXPORT BarycentricCombination
{
public:
/** Convenient type alias. */
using PointContainerType = TPointContainer;
using PointContainerPointer = typename PointContainerType::Pointer;
using PointType = typename PointContainerType::Element;
using WeightContainerType = TWeightContainer;
static PointType
Evaluate(const PointContainerPointer & points, const WeightContainerType & weights);
};
template <typename TCoordRep, unsigned int VPointDimension>
inline void
swap(Point<TCoordRep, VPointDimension> & a, Point<TCoordRep, VPointDimension> & b)
{
a.swap(b);
}
/** Makes a Point object, having the specified values as coordinates. */
template <typename TValue, typename... TVariadic>
auto
MakePoint(const TValue firstValue, const TVariadic... otherValues)
{
static_assert(std::conjunction_v<std::is_same<TVariadic, TValue>...>,
"The other values should have the same type as the first value.");
constexpr unsigned int dimension{ 1 + sizeof...(TVariadic) };
const std::array<TValue, dimension> stdArray{ { firstValue, otherValues... } };
return Point<TValue, dimension>{ stdArray };
}
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkPoint.hxx"
#endif
#endif
|