1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkSize_h
#define itkSize_h
#include "itkIntTypes.h"
#include "itkMacro.h"
#include "itkMakeFilled.h"
#include <algorithm> // For copy_n.
#include <cstddef> // For ptrdiff_t.
#include <type_traits> // For is_integral.
#include <memory>
namespace itk
{
/** \struct Size
* \brief Represent a n-dimensional size (bounds) of a n-dimensional image.
*
* Size is a templated class to represent multi-dimensional array bounds,
* i.e. (I,J,K,...). Size is templated over the dimension of the bounds.
* ITK assumes the first element of a size (bounds) is the fastest moving index.
*
* For efficiency, Size does not define a default constructor, a
* copy constructor, or an operator=. We rely on the compiler to provide
* efficient bitwise copies.
*
* Size is an "aggregate" class. Its data is public (m_InternalArray)
* allowing for fast and convenient instantiations/assignments.
*
* The following syntax for assigning an aggregate type like this is allowed/suggested:
*
*
* Size<3> var{{ 256, 256, 20 }}; // Also prevent narrowing conversions
* Size<3> var = {{ 256, 256, 20 }};
*
* The doubled braces {{ and }} are required to prevent `gcc -Wall'
* (and perhaps other compilers) from complaining about a partly
* bracketed initializer.
*
* As an aggregate type that is intended to provide highest performance
* characteristics, this class is not appropriate to inherit from,
* so setting this struct as final.
*
* \sa Index
* \ingroup ImageObjects
* \ingroup ITKCommon
*
* \sphinx
* \sphinxexample{Core/Common/CreateASize,Create A Size}
* \endsphinx
*/
template <unsigned int VDimension = 2>
struct ITK_TEMPLATE_EXPORT Size final
{
public:
// Using the `rule of zero` to this aggregate type
// C++20 changes the definition of aggregate such that classes with any user-declared ctors are no longer aggregates.
/** Standard class type aliases. */
using Self = Size;
/** Compatible Size and value type alias */
using SizeType = Size<VDimension>;
using SizeValueType = itk::SizeValueType;
/** Dimension constant */
static constexpr unsigned int Dimension = VDimension;
/** Get the dimension. */
static constexpr unsigned int
GetSizeDimension()
{
return VDimension;
}
/** Add two sizes. */
const Self
operator+(const Self & vec) const
{
Self result;
for (unsigned int i = 0; i < VDimension; ++i)
{
result[i] = m_InternalArray[i] + vec.m_InternalArray[i];
}
return result;
}
/** Increment size by a size. */
const Self &
operator+=(const Self & vec)
{
for (unsigned int i = 0; i < VDimension; ++i)
{
m_InternalArray[i] += vec.m_InternalArray[i];
}
return *this;
}
/** Subtract two sizes. */
const Self
operator-(const Self & vec) const
{
Self result;
for (unsigned int i = 0; i < VDimension; ++i)
{
result[i] = m_InternalArray[i] - vec.m_InternalArray[i];
}
return result;
}
/** Decrement size by a size. */
const Self &
operator-=(const Self & vec)
{
for (unsigned int i = 0; i < VDimension; ++i)
{
m_InternalArray[i] -= vec.m_InternalArray[i];
}
return *this;
}
/** Multiply two sizes (elementwise product). */
const Self operator*(const Self & vec) const
{
Self result;
for (unsigned int i = 0; i < VDimension; ++i)
{
result[i] = m_InternalArray[i] * vec.m_InternalArray[i];
}
return result;
}
/** Multiply two sizes (elementwise product). */
const Self &
operator*=(const Self & vec)
{
for (unsigned int i = 0; i < VDimension; ++i)
{
m_InternalArray[i] *= vec.m_InternalArray[i];
}
return *this;
}
/** Get the size. This provides a read only pointer to the size.
* \sa SetSize */
const SizeValueType *
GetSize() const
{
return m_InternalArray;
}
/** Set the size.
* Try to prototype this function so that val has to point to a block of
* memory that is the appropriate size.
* \sa GetSize */
void
SetSize(const SizeValueType val[VDimension])
{
std::copy_n(val, VDimension, m_InternalArray);
}
/** Sets the value of one of the elements.
* This method is mainly intended to facilitate the access to elements
* from Tcl and Python where C++ notation is not very convenient.
* \warning No bound checking is performed.
* \sa SetSize()
* \sa GetElement() */
void
SetElement(unsigned long element, SizeValueType val)
{
m_InternalArray[element] = val;
}
/** Gets the value of one of the elements.
* This method is mainly intended to facilitate the access to elements
* from Tcl and Python where C++ notation is not very convenient.
* \warning No bound checking is performed
* \sa GetSize()
* \sa SetElement() */
SizeValueType
GetElement(unsigned long element) const
{
return m_InternalArray[element];
}
/** Set one value for the index in all dimensions. Useful for initializing
* an offset to zero. */
void
Fill(SizeValueType value)
{
std::fill_n(begin(), size(), value);
} // MATCH std::array assign, ITK Fill
/** Multiplies all elements. Yields the number of pixels of an image of this size. */
[[nodiscard]] constexpr SizeValueType
CalculateProductOfElements() const
{
SizeValueType product{ 1 };
for (const SizeValueType value : m_InternalArray)
{
product *= value;
}
return product;
}
/** Size is an "aggregate" class. Its data is public (m_InternalArray)
* allowing for fast and convenient instantiations/assignments.
* ( See main class documentation for an example of initialization)
*/
/*
* Ask the compiler to align a type to the maximum useful alignment for the target
* machine you are compiling for. Whenever you leave out the alignment factor in an
* aligned attribute specification, the compiler automatically sets the alignment
* for the type to the largest alignment that is ever used for any data type on
* the target machine you are compiling for. Doing this can often make copy
* operations more efficient, because the compiler can use whatever instructions
* copy the biggest chunks of memory when performing copies to or from the variables
* that have types that you have aligned this way.
*/
static_assert(VDimension > 0, "Error: Only positive value sized VDimension allowed");
alignas(SizeValueType) SizeValueType m_InternalArray[VDimension];
// ======================= Mirror the access pattern behavior of the std::array class
/**
* Mirror the std::array type aliases and member function
* so that the Size class can be treated as a container
* class in a way that is similar to the std::array.
*/
using value_type = itk::SizeValueType;
using reference = value_type &;
using const_reference = const value_type &;
using iterator = value_type *;
using const_iterator = const value_type *;
using size_type = unsigned int;
using difference_type = ptrdiff_t;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
/**
* Mirror behavior of the std::array manipulations
* See std::array for documentation on these methods
*/
void
assign(const value_type & newValue)
{
std::fill_n(begin(), size(), newValue);
}
void
swap(Size & other)
{
std::swap(m_InternalArray, other.m_InternalArray);
}
constexpr const_iterator
cbegin() const
{
return &m_InternalArray[0];
}
constexpr iterator
begin()
{
return &m_InternalArray[0];
}
constexpr const_iterator
begin() const
{
return &m_InternalArray[0];
}
constexpr const_iterator
cend() const
{
return &m_InternalArray[VDimension];
}
constexpr iterator
end()
{
return &m_InternalArray[VDimension];
}
constexpr const_iterator
end() const
{
return &m_InternalArray[VDimension];
}
reverse_iterator
rbegin()
{
return reverse_iterator(end());
}
const_reverse_iterator
rbegin() const
{
return const_reverse_iterator(end());
}
reverse_iterator
rend()
{
return reverse_iterator(begin());
}
const_reverse_iterator
rend() const
{
return const_reverse_iterator(begin());
}
constexpr size_type
size() const
{
return VDimension;
}
constexpr size_type
max_size() const
{
return VDimension;
}
constexpr bool
empty() const
{
return false;
}
constexpr reference operator[](size_type pos) { return m_InternalArray[pos]; }
constexpr const_reference operator[](size_type pos) const { return m_InternalArray[pos]; }
reference
at(size_type pos)
{
ExceptionThrowingBoundsCheck(pos);
return m_InternalArray[pos];
}
const_reference
at(size_type pos) const
{
ExceptionThrowingBoundsCheck(pos);
return m_InternalArray[pos];
}
reference
front()
{
return *begin();
}
const_reference
front() const
{
return *begin();
}
reference
back()
{
return VDimension ? *(end() - 1) : *end();
}
const_reference
back() const
{
return VDimension ? *(end() - 1) : *end();
}
SizeValueType *
data()
{
return &m_InternalArray[0];
}
const SizeValueType *
data() const
{
return &m_InternalArray[0];
}
private:
void
ExceptionThrowingBoundsCheck(size_type pos) const
{
if (pos >= VDimension)
{
throw std::out_of_range("array::ExceptionThrowingBoundsCheck");
}
}
public:
/** Returns a Size object, filled with the specified value for each element.
*/
static constexpr Self
Filled(const SizeValueType value)
{
return MakeFilled<Self>(value);
}
}; //------------ End struct Size
template <unsigned int VDimension>
std::ostream &
operator<<(std::ostream & os, const Size<VDimension> & obj)
{
os << '[';
for (unsigned int i = 0; i + 1 < VDimension; ++i)
{
os << obj[i] << ", ";
}
if (VDimension >= 1)
{
os << obj[VDimension - 1];
}
os << ']';
return os;
}
// ======================= Mirror the access pattern behavior of the std::array class
// Array comparisons.
template <unsigned int VDimension>
inline bool
operator==(const Size<VDimension> & one, const Size<VDimension> & two)
{
return std::equal(one.begin(), one.end(), two.begin());
}
template <unsigned int VDimension>
inline bool
operator!=(const Size<VDimension> & one, const Size<VDimension> & two)
{
return !(one == two);
}
template <unsigned int VDimension>
inline bool
operator<(const Size<VDimension> & one, const Size<VDimension> & two)
{
return std::lexicographical_compare(one.begin(), one.end(), two.begin(), two.end());
}
template <unsigned int VDimension>
inline bool
operator>(const Size<VDimension> & one, const Size<VDimension> & two)
{
return two < one;
}
template <unsigned int VDimension>
inline bool
operator<=(const Size<VDimension> & one, const Size<VDimension> & two)
{
return !(one > two);
}
template <unsigned int VDimension>
inline bool
operator>=(const Size<VDimension> & one, const Size<VDimension> & two)
{
return !(one < two);
}
// Specialized algorithms [6.2.2.2].
template <unsigned int VDimension>
inline void
swap(Size<VDimension> & one, Size<VDimension> & two)
{
std::swap(one.m_InternalArray, two.m_InternalArray);
}
/** Makes a Size object, having the specified size values. */
template <typename... T>
auto
MakeSize(const T... values)
{
const auto toValueType = [](const auto value) {
static_assert(std::is_integral_v<decltype(value)>, "Each value must have an integral type!");
return static_cast<SizeValueType>(value);
};
return Size<sizeof...(T)>{ { toValueType(values)... } };
}
} // end namespace itk
#endif
|