File: itkSize.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (514 lines) | stat: -rw-r--r-- 12,514 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkSize_h
#define itkSize_h

#include "itkIntTypes.h"
#include "itkMacro.h"
#include "itkMakeFilled.h"
#include <algorithm>   // For copy_n.
#include <cstddef>     // For ptrdiff_t.
#include <type_traits> // For is_integral.
#include <memory>

namespace itk
{

/** \struct Size
 * \brief Represent a n-dimensional size (bounds) of a n-dimensional image.
 *
 * Size is a templated class to represent multi-dimensional array bounds,
 * i.e. (I,J,K,...).  Size is templated over the dimension of the bounds.
 * ITK assumes the first element of a size (bounds) is the fastest moving index.
 *
 * For efficiency, Size does not define a default constructor, a
 * copy constructor, or an operator=. We rely on the compiler to provide
 * efficient bitwise copies.
 *
 * Size is an "aggregate" class.  Its data is public (m_InternalArray)
 * allowing for fast and convenient instantiations/assignments.
 *
 * The following syntax for assigning an aggregate type like this is allowed/suggested:
 *
 *
 * Size<3> var{{ 256, 256, 20 }}; // Also prevent narrowing conversions
 * Size<3> var = {{ 256, 256, 20 }};
 *
 * The doubled braces {{ and }} are required to prevent `gcc -Wall'
 * (and perhaps other compilers) from complaining about a partly
 * bracketed initializer.
 *
 * As an aggregate type that is intended to provide highest performance
 * characteristics, this class is not appropriate to inherit from,
 * so setting this struct as final.
 *
 * \sa Index
 * \ingroup ImageObjects
 * \ingroup ITKCommon
 *
 * \sphinx
 * \sphinxexample{Core/Common/CreateASize,Create A Size}
 * \endsphinx
 */

template <unsigned int VDimension = 2>
struct ITK_TEMPLATE_EXPORT Size final
{
public:
  // Using the `rule of zero` to this aggregate type
  // C++20 changes the definition of aggregate such that classes with any user-declared ctors are no longer aggregates.

  /** Standard class type aliases. */
  using Self = Size;

  /** Compatible Size and value type alias */
  using SizeType = Size<VDimension>;
  using SizeValueType = itk::SizeValueType;

  /** Dimension constant */
  static constexpr unsigned int Dimension = VDimension;

  /** Get the dimension. */
  static constexpr unsigned int
  GetSizeDimension()
  {
    return VDimension;
  }

  /** Add two sizes.  */
  const Self
  operator+(const Self & vec) const
  {
    Self result;

    for (unsigned int i = 0; i < VDimension; ++i)
    {
      result[i] = m_InternalArray[i] + vec.m_InternalArray[i];
    }
    return result;
  }

  /** Increment size by a size.  */
  const Self &
  operator+=(const Self & vec)
  {
    for (unsigned int i = 0; i < VDimension; ++i)
    {
      m_InternalArray[i] += vec.m_InternalArray[i];
    }
    return *this;
  }

  /** Subtract two sizes.  */
  const Self
  operator-(const Self & vec) const
  {
    Self result;

    for (unsigned int i = 0; i < VDimension; ++i)
    {
      result[i] = m_InternalArray[i] - vec.m_InternalArray[i];
    }
    return result;
  }

  /** Decrement size by a size.  */
  const Self &
  operator-=(const Self & vec)
  {
    for (unsigned int i = 0; i < VDimension; ++i)
    {
      m_InternalArray[i] -= vec.m_InternalArray[i];
    }
    return *this;
  }

  /** Multiply two sizes (elementwise product).  */
  const Self operator*(const Self & vec) const
  {
    Self result;

    for (unsigned int i = 0; i < VDimension; ++i)
    {
      result[i] = m_InternalArray[i] * vec.m_InternalArray[i];
    }
    return result;
  }

  /** Multiply two sizes (elementwise product).  */
  const Self &
  operator*=(const Self & vec)
  {
    for (unsigned int i = 0; i < VDimension; ++i)
    {
      m_InternalArray[i] *= vec.m_InternalArray[i];
    }
    return *this;
  }

  /** Get the size. This provides a read only pointer to the size.
   * \sa SetSize */
  const SizeValueType *
  GetSize() const
  {
    return m_InternalArray;
  }

  /** Set the size.
   * Try to prototype this function so that val has to point to a block of
   * memory that is the appropriate size.
   *  \sa GetSize */
  void
  SetSize(const SizeValueType val[VDimension])
  {
    std::copy_n(val, VDimension, m_InternalArray);
  }

  /** Sets the value of one of the elements.
   * This method is mainly intended to facilitate the access to elements
   * from Tcl and Python where C++ notation is not very convenient.
   * \warning No bound checking is performed.
   * \sa SetSize()
   * \sa GetElement() */
  void
  SetElement(unsigned long element, SizeValueType val)
  {
    m_InternalArray[element] = val;
  }

  /** Gets the value of one of the elements.
   * This method is mainly intended to facilitate the access to elements
   * from Tcl and Python where C++ notation is not very convenient.
   * \warning No bound checking is performed
   * \sa GetSize()
   * \sa SetElement() */
  SizeValueType
  GetElement(unsigned long element) const
  {
    return m_InternalArray[element];
  }

  /** Set one value for the index in all dimensions.  Useful for initializing
   * an offset to zero. */
  void
  Fill(SizeValueType value)
  {
    std::fill_n(begin(), size(), value);
  } // MATCH std::array assign, ITK Fill

  /** Multiplies all elements. Yields the number of pixels of an image of this size. */
  [[nodiscard]] constexpr SizeValueType
  CalculateProductOfElements() const
  {
    SizeValueType product{ 1 };

    for (const SizeValueType value : m_InternalArray)
    {
      product *= value;
    }
    return product;
  }

  /** Size is an "aggregate" class.  Its data is public (m_InternalArray)
   * allowing for fast and convenient instantiations/assignments.
   * ( See main class documentation for an example of initialization)
   */
  /*
   *  Ask the compiler to align a type to the maximum useful alignment for the target
   *  machine you are compiling for. Whenever you leave out the alignment factor in an
   *  aligned attribute specification, the compiler automatically sets the alignment
   *  for the type to the largest alignment that is ever used for any data type on
   *  the target machine you are compiling for. Doing this can often make copy
   *  operations more efficient, because the compiler can use whatever instructions
   *  copy the biggest chunks of memory when performing copies to or from the variables
   *  that have types that you have aligned this way.
   */
  static_assert(VDimension > 0, "Error: Only positive value sized VDimension allowed");
  alignas(SizeValueType) SizeValueType m_InternalArray[VDimension];

  // ======================= Mirror the access pattern behavior of the std::array class
  /**
   * Mirror the std::array type aliases and member function
   * so that the Size class can be treated as a container
   * class in a way that is similar to the std::array.
   */
  using value_type = itk::SizeValueType;
  using reference = value_type &;
  using const_reference = const value_type &;
  using iterator = value_type *;
  using const_iterator = const value_type *;
  using size_type = unsigned int;
  using difference_type = ptrdiff_t;
  using reverse_iterator = std::reverse_iterator<iterator>;
  using const_reverse_iterator = std::reverse_iterator<const_iterator>;

  /**
   * Mirror behavior of the std::array manipulations
   * See std::array for documentation on these methods
   */
  void
  assign(const value_type & newValue)
  {
    std::fill_n(begin(), size(), newValue);
  }

  void
  swap(Size & other)
  {
    std::swap(m_InternalArray, other.m_InternalArray);
  }

  constexpr const_iterator
  cbegin() const
  {
    return &m_InternalArray[0];
  }

  constexpr iterator
  begin()
  {
    return &m_InternalArray[0];
  }

  constexpr const_iterator
  begin() const
  {
    return &m_InternalArray[0];
  }

  constexpr const_iterator
  cend() const
  {
    return &m_InternalArray[VDimension];
  }

  constexpr iterator
  end()
  {
    return &m_InternalArray[VDimension];
  }

  constexpr const_iterator
  end() const
  {
    return &m_InternalArray[VDimension];
  }

  reverse_iterator
  rbegin()
  {
    return reverse_iterator(end());
  }

  const_reverse_iterator
  rbegin() const
  {
    return const_reverse_iterator(end());
  }

  reverse_iterator
  rend()
  {
    return reverse_iterator(begin());
  }

  const_reverse_iterator
  rend() const
  {
    return const_reverse_iterator(begin());
  }

  constexpr size_type
  size() const
  {
    return VDimension;
  }

  constexpr size_type
  max_size() const
  {
    return VDimension;
  }

  constexpr bool
  empty() const
  {
    return false;
  }

  constexpr reference operator[](size_type pos) { return m_InternalArray[pos]; }

  constexpr const_reference operator[](size_type pos) const { return m_InternalArray[pos]; }

  reference
  at(size_type pos)
  {
    ExceptionThrowingBoundsCheck(pos);
    return m_InternalArray[pos];
  }

  const_reference
  at(size_type pos) const
  {
    ExceptionThrowingBoundsCheck(pos);
    return m_InternalArray[pos];
  }

  reference
  front()
  {
    return *begin();
  }

  const_reference
  front() const
  {
    return *begin();
  }

  reference
  back()
  {
    return VDimension ? *(end() - 1) : *end();
  }

  const_reference
  back() const
  {
    return VDimension ? *(end() - 1) : *end();
  }

  SizeValueType *
  data()
  {
    return &m_InternalArray[0];
  }

  const SizeValueType *
  data() const
  {
    return &m_InternalArray[0];
  }

private:
  void
  ExceptionThrowingBoundsCheck(size_type pos) const
  {
    if (pos >= VDimension)
    {
      throw std::out_of_range("array::ExceptionThrowingBoundsCheck");
    }
  }

public:
  /** Returns a Size object, filled with the specified value for each element.
   */
  static constexpr Self
  Filled(const SizeValueType value)
  {
    return MakeFilled<Self>(value);
  }

}; //------------ End struct Size


template <unsigned int VDimension>
std::ostream &
operator<<(std::ostream & os, const Size<VDimension> & obj)
{
  os << '[';
  for (unsigned int i = 0; i + 1 < VDimension; ++i)
  {
    os << obj[i] << ", ";
  }
  if (VDimension >= 1)
  {
    os << obj[VDimension - 1];
  }
  os << ']';
  return os;
}

// ======================= Mirror the access pattern behavior of the std::array class
// Array comparisons.
template <unsigned int VDimension>
inline bool
operator==(const Size<VDimension> & one, const Size<VDimension> & two)
{
  return std::equal(one.begin(), one.end(), two.begin());
}

template <unsigned int VDimension>
inline bool
operator!=(const Size<VDimension> & one, const Size<VDimension> & two)
{
  return !(one == two);
}

template <unsigned int VDimension>
inline bool
operator<(const Size<VDimension> & one, const Size<VDimension> & two)
{
  return std::lexicographical_compare(one.begin(), one.end(), two.begin(), two.end());
}

template <unsigned int VDimension>
inline bool
operator>(const Size<VDimension> & one, const Size<VDimension> & two)
{
  return two < one;
}

template <unsigned int VDimension>
inline bool
operator<=(const Size<VDimension> & one, const Size<VDimension> & two)
{
  return !(one > two);
}

template <unsigned int VDimension>
inline bool
operator>=(const Size<VDimension> & one, const Size<VDimension> & two)
{
  return !(one < two);
}

// Specialized algorithms [6.2.2.2].
template <unsigned int VDimension>
inline void
swap(Size<VDimension> & one, Size<VDimension> & two)
{
  std::swap(one.m_InternalArray, two.m_InternalArray);
}


/** Makes a Size object, having the specified size values. */
template <typename... T>
auto
MakeSize(const T... values)
{
  const auto toValueType = [](const auto value) {
    static_assert(std::is_integral_v<decltype(value)>, "Each value must have an integral type!");
    return static_cast<SizeValueType>(value);
  };
  return Size<sizeof...(T)>{ { toValueType(values)... } };
}

} // end namespace itk

#endif