1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkZeroFluxNeumannBoundaryCondition_h
#define itkZeroFluxNeumannBoundaryCondition_h
#include "itkImageBoundaryCondition.h"
namespace itk
{
/** \class ZeroFluxNeumannBoundaryCondition
* \brief
* A function object that determines a neighborhood of values at an
* image boundary according to a Neumann boundary condition where first,
* upwind derivatives on the boundary are zero. This is a useful condition
* in solving some classes of differential equations.
*
* For example, invoking this function object on a 7x5 iterator that masks
* a region at an image corner (iterator is centered on the 2):
\code
* * * * * * *
* * * * * * *
* * 1 2 3 4 5 (where * denotes pixels that lie
* * 3 3 5 5 6 outside of the image boundary)
* * 4 4 6 7 8
\endcode
* returns the following neighborhood of values:
\code
1 1 1 2 3 4 5
1 1 1 2 3 4 5
1 1 1 2 3 4 5
3 3 3 3 5 5 6 (note the corner values)
4 4 4 4 6 7 8
\endcode
* The input to this function object is a neighborhood iterator. This boundary
* condition object is designed to be given as a template argument to a
* NeighborhoodIterator or any of the NeighborhoodIterator
* subclasses.
*
* \ingroup DataRepresentation
* \ingroup ImageObjects
* \ingroup ITKCommon
*/
template <typename TInputImage, typename TOutputImage = TInputImage>
class ITK_TEMPLATE_EXPORT ZeroFluxNeumannBoundaryCondition : public ImageBoundaryCondition<TInputImage, TOutputImage>
{
public:
/** Standard class type aliases. */
using Self = ZeroFluxNeumannBoundaryCondition;
using Superclass = ImageBoundaryCondition<TInputImage, TOutputImage>;
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(ZeroFluxNeumannBoundaryCondition);
/** Extract information from the image type. */
using typename Superclass::PixelType;
using typename Superclass::PixelPointerType;
using typename Superclass::OutputPixelType;
using typename Superclass::RegionType;
using typename Superclass::IndexType;
using typename Superclass::SizeType;
using typename Superclass::OffsetType;
using typename Superclass::NeighborhoodType;
using typename Superclass::NeighborhoodAccessorFunctorType;
/** Extract information from the image type. */
static constexpr unsigned int ImageDimension = Superclass::ImageDimension;
/** Default constructor. */
ZeroFluxNeumannBoundaryCondition() = default;
/** Computes and returns a neighborhood of appropriate values from
* neighborhood iterator data.. */
OutputPixelType
operator()(const OffsetType & point_index,
const OffsetType & boundary_offset,
const NeighborhoodType * data) const override;
/** Computes and returns the appropriate pixel value from
* neighborhood iterator data, using the functor. */
OutputPixelType
operator()(const OffsetType & point_index,
const OffsetType & boundary_offset,
const NeighborhoodType * data,
const NeighborhoodAccessorFunctorType & neighborhoodAccessorFunctor) const override;
/** Determines the necessary input region for the output region.
* For this boundary condition, only the intersection of the largest
* possible image region and the output requested region is
* needed. If the intersection is empty, then a one-pixel layer of
* the image from the side closest to the output requested region is needed.
*
* \param inputLargestPossibleRegion Largest possible region of the input image.
* \param outputRequestedRegion The output requested region.
* \return The necessary input region required to determine the
* pixel values in the outputRequestedRegion.
*/
RegionType
GetInputRequestedRegion(const RegionType & inputLargestPossibleRegion,
const RegionType & outputRequestedRegion) const override;
/** Returns a value for a given pixel at an index. If the index is inside the
* bounds of the input image, then the pixel value is obtained from
* the input image. Otherwise, the nearest pixel value is returned.
*
* \param index The index of the desired pixel.
* \param image The image from which pixel values should be determined.
*/
OutputPixelType
GetPixel(const IndexType & index, const TInputImage * image) const override;
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkZeroFluxNeumannBoundaryCondition.hxx"
#endif
/*
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkZeroFluxNeumannBoundaryCondition.hxx"
#endif
*/
#endif
|