File: VNLSparseLUSolverTraitsTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (228 lines) | stat: -rw-r--r-- 6,587 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "VNLSparseLUSolverTraits.h"
#include "itkMath.h" // itk::Math::abs

#include <iostream>
#include <cstdlib>

template <class TVector>
bool
VectorsEquals(const TVector & v1, const TVector & v2, const typename TVector::element_type & tolerance)
{
  if (v1.size() != v2.size())
  {
    std::cerr << "Error: v1.size() != v2.size()" << std::endl;
    return false;
  }

  for (unsigned int i = 0; i < v1.size(); ++i)
  {
    if (itk::Math::abs(v1(i) - v2(i)) > tolerance)
    {
      std::cerr << "Error: itk::Math::abs( v1(" << i << ") - v2(" << i << ") ) > " << tolerance << std::endl;
      return false;
    }
  }

  return true;
}

int
VNLSparseLUSolverTraitsTest(int, char *[])
{
  /**
   * Define an sparse LU solver traits type that operates over sparse matrices and
   * vectors of type "double"
   */
  using CoordinateType = double;
  using SolverTraits = VNLSparseLUSolverTraits<CoordinateType>;
  using MatrixType = SolverTraits::MatrixType;
  using VectorType = SolverTraits::VectorType;

  /**
   * Build the linear system to solve
   */
  unsigned int N = 3;
  VectorType   Bx = SolverTraits::InitializeVector(N);
  Bx.fill(0.);
  Bx[0] = 2.1;

  VectorType By = SolverTraits::InitializeVector(N);
  By.fill(0.);
  By[1] = 1.1;
  By[2] = -3.;

  VectorType Bz = SolverTraits::InitializeVector(N);
  Bz.fill(0.);
  Bz[0] = 19.4;
  Bz[1] = -4.3;

  MatrixType A = SolverTraits::InitializeSparseMatrix(N, N);
  SolverTraits::FillMatrix(A, 0, 0, 2);
  SolverTraits::FillMatrix(A, 0, 1, -1);
  SolverTraits::FillMatrix(A, 1, 0, -1);
  SolverTraits::FillMatrix(A, 1, 1, 2);
  SolverTraits::FillMatrix(A, 1, 2, -1);
  SolverTraits::FillMatrix(A, 2, 1, -1);
  SolverTraits::FillMatrix(A, 2, 2, 2);

  /**
   * Define the tolerance and expected results
   */
  CoordinateType tolerance = 1e-9;

  VectorType Xexpected(N);
  Xexpected(0) = 1.575;
  Xexpected(1) = 1.05;
  Xexpected(2) = 0.525;

  VectorType Yexpected(N);
  Yexpected(0) = -0.2;
  Yexpected(1) = -0.4;
  Yexpected(2) = -1.7;

  VectorType Zexpected(N);
  Zexpected(0) = 12.4;
  Zexpected(1) = 5.4;
  Zexpected(2) = 2.7;

  /**
   * Test 1: Check the result of A * X = Bx
   */
  {
    VectorType X = SolverTraits::InitializeVector(N);
    SolverTraits::Solve(A, Bx, X);
    if (!VectorsEquals(X, Xexpected, tolerance))
    {
      return EXIT_FAILURE;
    }
  }

  /**
   * Test 2: Check the result of A * X = Bx, A * Y = By
   */
  {
    VectorType X = SolverTraits::InitializeVector(N);
    VectorType Y = SolverTraits::InitializeVector(N);
    SolverTraits::Solve(A, Bx, X);
    SolverTraits::Solve(A, By, Y);
    if (!VectorsEquals(X, Xexpected, tolerance) || !VectorsEquals(Y, Yexpected, tolerance))
    {
      return EXIT_FAILURE;
    }
  }

  /**
   * Test 3: Check the result of A * X = Bx, A * Y = By, A * Z = Bz
   */
  {
    VectorType X = SolverTraits::InitializeVector(N);
    VectorType Y = SolverTraits::InitializeVector(N);
    VectorType Z = SolverTraits::InitializeVector(N);
    SolverTraits::Solve(A, Bx, X);
    SolverTraits::Solve(A, By, Y);
    SolverTraits::Solve(A, Bz, Z);
    if (!VectorsEquals(X, Xexpected, tolerance) || !VectorsEquals(Y, Yexpected, tolerance) ||
        !VectorsEquals(Z, Zexpected, tolerance))
    {
      return EXIT_FAILURE;
    }
  }

  /**
   * Test 4: Check the result of A * X = Bx (reuse the decomposed matrix for multiple back-substitutions)
   */
  {
    VectorType               X = SolverTraits::InitializeVector(N);
    SolverTraits::SolverType solver(A);

    // First back-substitution
    SolverTraits::Solve(solver, Bx, X);
    if (!VectorsEquals(X, Xexpected, tolerance))
    {
      return EXIT_FAILURE;
    }

    // Second back-substitution (reusing the already factored matrix)
    SolverTraits::Solve(solver, Bx, X);
    if (!VectorsEquals(X, Xexpected, tolerance))
    {
      return EXIT_FAILURE;
    }
  }

  /**
   * Test 5: Check the result of A * X = Bx, A * Y = By (reuse the decomposed matrix for multiple back-substitutions)
   */
  {
    VectorType               X = SolverTraits::InitializeVector(N);
    VectorType               Y = SolverTraits::InitializeVector(N);
    SolverTraits::SolverType solver(A);

    // First back-substitution
    SolverTraits::Solve(solver, Bx, X);
    SolverTraits::Solve(solver, By, Y);
    if (!VectorsEquals(X, Xexpected, tolerance) || !VectorsEquals(Y, Yexpected, tolerance))
    {
      return EXIT_FAILURE;
    }

    // Second back-substitution (reusing the already factored matrix)
    SolverTraits::Solve(solver, Bx, X);
    SolverTraits::Solve(solver, By, Y);
    if (!VectorsEquals(X, Xexpected, tolerance) || !VectorsEquals(Y, Yexpected, tolerance))
    {
      return EXIT_FAILURE;
    }
  }

  /**
   * Test 6: Check the result of A * X = Bx, A * Y = By, A * Z = Bz (reuse the decomposed matrix for multiple
   * back-substitutions)
   */
  {
    VectorType               X = SolverTraits::InitializeVector(N);
    VectorType               Y = SolverTraits::InitializeVector(N);
    VectorType               Z = SolverTraits::InitializeVector(N);
    SolverTraits::SolverType solver(A);

    // First back-substitution
    SolverTraits::Solve(solver, Bx, X);
    SolverTraits::Solve(solver, By, Y);
    SolverTraits::Solve(solver, Bz, Z);
    if (!VectorsEquals(X, Xexpected, tolerance) || !VectorsEquals(Y, Yexpected, tolerance) ||
        !VectorsEquals(Z, Zexpected, tolerance))
    {
      return EXIT_FAILURE;
    }

    // Second back-substitution (reusing the already factored matrix)
    SolverTraits::Solve(solver, Bx, X);
    SolverTraits::Solve(solver, By, Y);
    SolverTraits::Solve(solver, Bz, Z);
    if (!VectorsEquals(X, Xexpected, tolerance) || !VectorsEquals(Y, Yexpected, tolerance) ||
        !VectorsEquals(Z, Zexpected, tolerance))
    {
      return EXIT_FAILURE;
    }
  }

  return EXIT_SUCCESS;
}