1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
/**
*
* This program illustrates the use of Geometric objects
*
*/
#include "itkMath.h"
#include "itkCovariantVector.h"
#include <iostream>
int
itkCovariantVectorGeometryTest(int, char *[])
{
// Dimension & Type
constexpr unsigned int N = 3;
using ValueType = double;
// Vector type
using VectorType = itk::CovariantVector<ValueType, N>;
VectorType va;
va[0] = 1.0;
va[1] = 2.0;
va[2] = 7.0;
std::cout << "va = { 1.0, 2.0, 7.0 } = ";
std::cout << va << std::endl;
VectorType vb;
vb[0] = 1.0;
vb[1] = 3.0;
vb[2] = 5.0;
std::cout << "vb = (1,3,5) = ";
std::cout << vb << std::endl;
VectorType vc = vb - va;
std::cout << "vc = vb - va = ";
std::cout << vc << std::endl;
VectorType vd = va * 5.0;
std::cout << "vd = va * 5.0 = ";
std::cout << vd << std::endl;
VectorType ve = vd / 5.0;
std::cout << "ve = vd * 5.0 = ";
std::cout << ve << std::endl;
vd += va;
std::cout << "vd += va = ";
std::cout << vd << std::endl;
ve -= vb;
std::cout << "ve -= vb = ";
std::cout << ve << std::endl;
VectorType vh = vb;
std::cout << "vh = vb = ";
std::cout << vh << std::endl;
VectorType vg(va);
std::cout << "vg( va ) = ";
std::cout << vg << std::endl;
ValueType norm2 = vg.GetSquaredNorm();
std::cout << "vg squared norm = ";
std::cout << norm2 << std::endl;
ValueType norm = vg.GetNorm();
std::cout << "vg norm = ";
std::cout << norm << std::endl;
ValueType normX = vg.Normalize();
std::cout << "vg after normalizing: " << vg << std::endl;
if (norm != normX)
{
std::cout << "Norms from GetNorm() and from Normalize() are different" << std::endl;
return EXIT_FAILURE;
}
// Test for vnl interface
// Test the no const version that returns an vnl_vector_ref
vnl_vector_ref<ValueType> vnlVector = va.GetVnlVector();
{
std::cout << "vnl_vector_ref = va ";
for (unsigned int i = 0; i < N; ++i)
{
std::cout << vnlVector[i] << ", ";
}
std::cout << std::endl;
std::cout << "vnl_vector_ref.begin() = va.Begin()";
std::cout << std::endl;
std::cout << vnlVector.begin() << " = ";
std::cout << va.cbegin() << std::endl;
}
// Test the const version that returns an vnl_vector
const VectorType vf(va);
vnl_vector<ValueType> vnlVector2 = vf.GetVnlVector();
{
std::cout << "vnl_vector = va ";
for (unsigned int i = 0; i < N; ++i)
{
std::cout << vnlVector2[i] << ", ";
}
std::cout << std::endl;
std::cout << "vnl_vector.begin() != vf.Begin()";
std::cout << std::endl;
std::cout << vnlVector2.begin() << " = ";
std::cout << vf.cbegin() << std::endl;
}
// Test for CastFrom() method
{
std::cout << "Test for CastFrom() method... ";
const float tolerance = 1e-7;
// CovariantVector Classes
using DoubleCovariantVectorType = itk::CovariantVector<double, N>;
using FloatCovariantVectorType = itk::CovariantVector<float, N>;
DoubleCovariantVectorType dp;
dp[0] = 1.0;
dp[1] = 1.7;
dp[2] = 1.9;
FloatCovariantVectorType fp;
fp[0] = 0.0;
fp[1] = 0.0;
fp[2] = 0.0;
fp.CastFrom(dp);
std::cout << std::endl;
for (unsigned int i = 0; i < N; ++i)
{
auto val = static_cast<FloatCovariantVectorType::ValueType>(dp[i]);
// std::cout << val << std::endl;
// std::cout << fp[i] << std::endl;
const float diff = itk::Math::abs(val - fp[i]);
std::cout << "difference = " << diff << std::endl;
if (itk::Math::abs(val - fp[i]) > tolerance)
{
std::cout << "Test failed at component " << i << std::endl;
return EXIT_FAILURE;
}
}
std::cout << " PASSED ! " << std::endl;
}
// Test the inner products
{
using ContravariantVectorType = itk::Vector<double, 3>;
using CovariantVectorType = itk::CovariantVector<double, 3>;
ContravariantVectorType contravariant;
contravariant[0] = 1.0;
contravariant[1] = 2.0;
contravariant[2] = -7.0;
CovariantVectorType covariant;
covariant[0] = 1.0;
covariant[1] = 3.0;
covariant[2] = 5.0;
const double expectedValue = -28.0;
if (!itk::Math::FloatAlmostEqual(expectedValue, covariant * contravariant) ||
!itk::Math::FloatAlmostEqual(expectedValue, contravariant * covariant))
{
std::cerr << "Error in inner product computation." << std::endl;
return EXIT_FAILURE;
}
}
// Test the Cross products
{
using ContravariantVectorType = itk::Vector<double, 3>;
using CovariantVectorType = itk::CovariantVector<double, 3>;
ContravariantVectorType vaa;
ContravariantVectorType vbb;
vaa[0] = 1.0;
vaa[1] = 0.0;
vaa[2] = 0.0;
vbb[0] = 0.0;
vbb[1] = 1.0;
vbb[2] = 0.0;
CovariantVectorType normal;
itk::CrossProduct(normal, vaa, vbb);
CovariantVectorType expectedNormal;
expectedNormal[0] = 0.0;
expectedNormal[1] = 0.0;
expectedNormal[2] = 1.0;
if (!itk::Math::FloatAlmostEqual(normal[0], expectedNormal[0]) ||
!itk::Math::FloatAlmostEqual(normal[1], expectedNormal[1]) ||
!itk::Math::FloatAlmostEqual(normal[2], expectedNormal[2]))
{
std::cerr << "Error in CrossProduct computation." << std::endl;
return EXIT_FAILURE;
}
}
//
// test that the ComponentType is present
{
using CovariantVectorType = itk::CovariantVector<double, 3>;
CovariantVectorType::ComponentType comp(1.0);
double x(1.0);
if (sizeof(comp) != sizeof(double))
{
std::cerr << "error -- CovariantVectorType::ComponentType size != sizeof(double)" << std::endl;
return EXIT_FAILURE;
}
auto * compp = reinterpret_cast<char *>(&comp);
auto * xp = reinterpret_cast<char *>(&x);
for (unsigned int i = 0; i < sizeof(CovariantVectorType::ComponentType); ++i)
{
if (compp[i] != xp[i])
{
std::cerr << "error -- bit pattern for CovariantVectorType::ComponentType doesn't match "
<< " double with same value" << std::endl;
}
}
}
return EXIT_SUCCESS;
}
|