1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include <iostream>
#include "itkFixedArray.h"
#include <ctime>
#include <cstring>
int
itkFixedArrayTest2(int, char *[])
{
// Define the number of elements in the array
const unsigned int nelements = 10000000L;
// Define the number of runs used for timing
constexpr unsigned int nrun = 10;
// Declare a simple timer
clock_t t;
using ArrayType = itk::FixedArray<double, 2>;
// Declare an array of nelements FixedArray
// and add a small margin to play with pointers
// but not map outside the allocated memory
auto * vec = new ArrayType[nelements + 8];
// Fill it up with zeros
memset(vec, 0, (nelements + 8) * sizeof(ArrayType));
// Display the alignment of the array
std::cout << "Initial alignment: " << (((size_t)vec) & 7) << '\n';
// Start a simple experiment
t = clock();
double acc1 = 0.0;
for (unsigned int i = 0; i < nrun; ++i)
{
for (unsigned int j = 0; j < nelements; ++j)
{
acc1 += vec[j][0];
}
}
// Get the final timing and display it
t = clock() - t;
const double time1 = (t * 1000.0) / CLOCKS_PER_SEC;
std::cout << "Initial execution time: " << time1 << "ms\n";
// We now force an 8 bytes aligned array
// Cast the pointer to char to play with bytes
auto * p = reinterpret_cast<char *>(vec);
// Move the char pointer until it is aligned on 8 bytes
while (((size_t)p) % 8)
{
++p;
}
// Cast the 8 bytes aligned pointer back to the original type
auto * vec2 = reinterpret_cast<ArrayType *>(p);
// Make sure the new pointer is well aligned by
// displaying the alignment
std::cout << "New alignment: " << (((size_t)vec2) & 7) << '\n';
// Start the simple experiment on the 8 byte aligned array
t = clock();
double acc2 = 0.0;
for (unsigned int i = 0; i < nrun; ++i)
{
for (unsigned int j = 0; j < nelements; ++j)
{
acc2 += vec2[j][0];
}
}
// Get the final timing and display it
t = clock() - t;
const double time2 = (t * 1000.0) / CLOCKS_PER_SEC;
std::cout << "Execution time: " << time2 << "ms\n";
// Free up the memory
delete[] vec;
const double ratio = 100.0 * (time1 - time2) / time2;
const bool sameptr = (vec == vec2);
if (sameptr)
{
std::cout << "Same pointers: true" << std::endl;
}
else
{
std::cout << "Same pointers: false" << std::endl;
}
std::cout << "Performance ratio = " << ratio << '%' << std::endl;
if (!sameptr && ratio > 20.0) // tolerates only 20%
{
std::cerr << "Performance degraded below tolerance" << std::endl;
return EXIT_FAILURE;
}
// Make sure we do something with the sums otherwise everything
// could be optimized away by the compiler
if (acc1 == 0.0 && acc2 == 0.0)
{
return EXIT_SUCCESS;
}
return EXIT_FAILURE;
}
|