1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkFrustumSpatialFunction.h"
#include "itkTestingMacros.h"
#include <set>
int
itkFrustumSpatialFunctionTest(int, char *[])
{
// Define the dimensionality
constexpr unsigned int PointDimension = 3;
// Define the point coordinate representation type
using PointCoordRepType = float;
// Define the point type
using PointType = itk::Point<PointCoordRepType, PointDimension>;
// Define the type for the frustum spatial function
using FrustumSpatialFunctionType = itk::FrustumSpatialFunction<PointDimension, PointType>;
// Create the frustum spatial function
auto frustrumSpatialFunction = FrustumSpatialFunctionType::New();
ITK_EXERCISE_BASIC_OBJECT_METHODS(frustrumSpatialFunction, FrustumSpatialFunction, InteriorExteriorSpatialFunction);
// Set the frustum properties
FrustumSpatialFunctionType::InputType apex;
apex.Fill(1.1);
frustrumSpatialFunction->SetApex(apex);
ITK_TEST_SET_GET_VALUE(apex, frustrumSpatialFunction->GetApex());
double topPlane = 50.0;
frustrumSpatialFunction->SetTopPlane(topPlane);
ITK_TEST_SET_GET_VALUE(topPlane, frustrumSpatialFunction->GetTopPlane());
double bottomPlane = 10.0;
frustrumSpatialFunction->SetBottomPlane(bottomPlane);
ITK_TEST_SET_GET_VALUE(bottomPlane, frustrumSpatialFunction->GetBottomPlane());
double angleZ = 36;
frustrumSpatialFunction->SetAngleZ(angleZ);
ITK_TEST_SET_GET_VALUE(angleZ, frustrumSpatialFunction->GetAngleZ());
double apertureAngleX = 54;
frustrumSpatialFunction->SetApertureAngleX(apertureAngleX);
ITK_TEST_SET_GET_VALUE(apertureAngleX, frustrumSpatialFunction->GetApertureAngleX());
double apertureAngleY = 120;
frustrumSpatialFunction->SetApertureAngleY(apertureAngleY);
ITK_TEST_SET_GET_VALUE(apertureAngleY, frustrumSpatialFunction->GetApertureAngleY());
// Test for a rotation in the XZ plane
//
auto rotationPlane = static_cast<FrustumSpatialFunctionType::FrustumRotationPlaneType>(1);
frustrumSpatialFunction->SetRotationPlane(rotationPlane);
ITK_TEST_SET_GET_VALUE(rotationPlane, frustrumSpatialFunction->GetRotationPlane());
// Define inside/outside points to test the function
FrustumSpatialFunctionType::InputType insidePoint;
insidePoint[0] = 20.0;
insidePoint[1] = 15.0;
insidePoint[2] = 1.0;
FrustumSpatialFunctionType::InputType outsidePoint1;
outsidePoint1[0] = 0.0;
outsidePoint1[1] = 2.0;
outsidePoint1[2] = 1.0;
FrustumSpatialFunctionType::InputType outsidePoint2;
outsidePoint2[0] = 20.0;
outsidePoint2[1] = 2.0;
outsidePoint2[2] = 20.0;
FrustumSpatialFunctionType::InputType outsidePoint3;
outsidePoint3[0] = 1.0;
outsidePoint3[1] = 40.0;
outsidePoint3[2] = 200.0;
FrustumSpatialFunctionType::InputType outsidePoint4;
outsidePoint4[0] = 20.0;
outsidePoint4[1] = 40.0;
outsidePoint4[2] = 1.0;
FrustumSpatialFunctionType::OutputType insidePointOutputValue = frustrumSpatialFunction->Evaluate(insidePoint);
FrustumSpatialFunctionType::OutputType outsidePointOutputValue1 = frustrumSpatialFunction->Evaluate(outsidePoint1);
FrustumSpatialFunctionType::OutputType outsidePointOutputValue2 = frustrumSpatialFunction->Evaluate(outsidePoint2);
int testStatus = EXIT_SUCCESS;
if (!insidePointOutputValue)
{
std::cerr << "Error " << std::endl;
std::cerr << " Inside point: " << insidePoint << std::endl;
std::cerr << " is outside frustum" << std::endl;
std::cerr << "Test FAILED ! " << std::endl;
testStatus = EXIT_FAILURE;
}
if (outsidePointOutputValue1)
{
std::cerr << "Error " << std::endl;
std::cerr << " Expected : " << outsidePoint1 << std::endl;
std::cerr << " point to be outside bottom/top planes" << std::endl;
std::cerr << " is inside frustum" << std::endl;
std::cerr << "Test FAILED ! " << std::endl;
testStatus = EXIT_FAILURE;
}
if (outsidePointOutputValue2)
{
std::cerr << "Error " << std::endl;
std::cerr << " Expected : " << outsidePoint2 << std::endl;
std::cerr << " point to be outside due to aperture in X" << std::endl;
std::cerr << " is inside frustum" << std::endl;
std::cerr << "Test FAILED ! " << std::endl;
testStatus = EXIT_FAILURE;
}
// Test for a rotation in the YZ plane
//
rotationPlane = static_cast<FrustumSpatialFunctionType::FrustumRotationPlaneType>(2);
frustrumSpatialFunction->SetRotationPlane(rotationPlane);
ITK_TEST_SET_GET_VALUE(rotationPlane, frustrumSpatialFunction->GetRotationPlane());
insidePoint[0] = 20.0;
insidePoint[1] = 15.0;
insidePoint[2] = 1.0;
outsidePoint1[0] = 0.0;
outsidePoint1[1] = 2.0;
outsidePoint1[2] = 1.0;
outsidePoint2[0] = 20.0;
outsidePoint2[1] = 2.0;
outsidePoint2[2] = 20.0;
insidePointOutputValue = frustrumSpatialFunction->Evaluate(insidePoint);
outsidePointOutputValue1 = frustrumSpatialFunction->Evaluate(outsidePoint1);
outsidePointOutputValue2 = frustrumSpatialFunction->Evaluate(outsidePoint2);
if (!insidePointOutputValue)
{
std::cerr << "Error " << std::endl;
std::cerr << " Inside point: " << insidePoint << std::endl;
std::cerr << " is outside frustum" << std::endl;
std::cerr << "Test FAILED ! " << std::endl;
testStatus = EXIT_FAILURE;
}
if (outsidePointOutputValue1)
{
std::cerr << "Error " << std::endl;
std::cerr << " Expected : " << outsidePoint1 << std::endl;
std::cerr << " point to be outside bottom/top planes" << std::endl;
std::cerr << " is inside frustum" << std::endl;
std::cerr << "Test FAILED ! " << std::endl;
testStatus = EXIT_FAILURE;
}
if (outsidePointOutputValue2)
{
std::cerr << "Error " << std::endl;
std::cerr << " Expected : " << outsidePoint2 << std::endl;
std::cerr << " point to be outside due to aperture in Y" << std::endl;
std::cerr << " is inside frustum" << std::endl;
std::cerr << "Test FAILED ! " << std::endl;
testStatus = EXIT_FAILURE;
}
// Test for the condition where the top plane is less than the bottom plane
topPlane = 10.0;
frustrumSpatialFunction->SetTopPlane(topPlane);
bottomPlane = 50.0;
frustrumSpatialFunction->SetBottomPlane(bottomPlane);
outsidePointOutputValue1 = frustrumSpatialFunction->Evaluate(outsidePoint1);
if (outsidePointOutputValue1)
{
std::cerr << "Error " << std::endl;
std::cerr << " Expected : " << outsidePoint1 << std::endl;
std::cerr << " point to be outside bottom/top planes" << std::endl;
std::cerr << " is inside frustum" << std::endl;
std::cerr << "Test FAILED ! " << std::endl;
testStatus = EXIT_FAILURE;
}
// Test streaming enumeration for FrustumSpatialFunctionEnums elements
const std::set<itk::FrustumSpatialFunctionEnums::RotationPlane> allRotationPlanes{
itk::FrustumSpatialFunctionEnums::RotationPlane::RotateInXZPlane,
itk::FrustumSpatialFunctionEnums::RotationPlane::RotateInYZPlane
};
for (const auto & ee : allRotationPlanes)
{
std::cout << "STREAMED ENUM VALUE itk::FrustumSpatialFunctionEnums::RotationPlane: " << ee << std::endl;
}
return testStatus;
}
|