File: itkShapedImageNeighborhoodRangeGTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (1132 lines) | stat: -rw-r--r-- 42,543 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

// First include the header file to be tested:
#include "itkShapedImageNeighborhoodRange.h"

#include "itkConstantBoundaryCondition.h"
#include "itkConstantBoundaryImageNeighborhoodPixelAccessPolicy.h"
#include "itkConstNeighborhoodIterator.h"
#include "itkImage.h"
#include "itkImageNeighborhoodOffsets.h"
#include "itkRangeGTestUtilities.h"
#include "itkVectorImage.h"

#include <gtest/gtest.h>

#include <algorithm> // For std::reverse_copy, std::equal, etc.
#include <array>
#include <numeric> // For std::inner_product

// Test template instantiations for various ImageDimenion values, and const Image:
template class itk::ShapedImageNeighborhoodRange<itk::Image<short, 1>>;
template class itk::ShapedImageNeighborhoodRange<itk::Image<short, 2>>;
template class itk::ShapedImageNeighborhoodRange<itk::Image<short, 3>>;
template class itk::ShapedImageNeighborhoodRange<itk::Image<short, 4>>;
template class itk::ShapedImageNeighborhoodRange<const itk::Image<short>>;
template class itk::ShapedImageNeighborhoodRange<itk::VectorImage<short>>;
template class itk::ShapedImageNeighborhoodRange<const itk::VectorImage<short>>;

using itk::ShapedImageNeighborhoodRange;
using itk::RangeGTestUtilities;

namespace
{
template <typename TImage>
typename TImage::Pointer
CreateImage(const unsigned int sizeX, const unsigned int sizeY)
{
  const auto                      image = TImage::New();
  const typename TImage::SizeType imageSize = { { sizeX, sizeY } };
  image->SetRegions(imageSize);
  image->Allocate();
  return image;
}


// Tells whether or not ShapedImageNeighborhoodRange<TImage>::iterator is the same type
// as ShapedImageNeighborhoodRange<TImage>::const_iterator.
template <typename TImage>
constexpr bool
IsIteratorTypeTheSameAsConstIteratorType()
{
  using RangeType = ShapedImageNeighborhoodRange<TImage>;

  return std::is_same_v<typename RangeType::iterator, typename RangeType::const_iterator>;
}


static_assert(!IsIteratorTypeTheSameAsConstIteratorType<itk::Image<int>>() &&
                !IsIteratorTypeTheSameAsConstIteratorType<itk::VectorImage<int>>(),
              "For a non-const image, non-const iterator and const_iterator should be different types!");
static_assert(IsIteratorTypeTheSameAsConstIteratorType<const itk::Image<int>>() &&
                IsIteratorTypeTheSameAsConstIteratorType<const itk::VectorImage<int>>(),
              "For a const image, non-const iterator and const_iterator should be the same type!");


// Creates a test image, filled with a sequence of natural numbers, 1, 2, 3, ..., N.
template <typename TImage>
typename TImage::Pointer
CreateImageFilledWithSequenceOfNaturalNumbers(const unsigned int sizeX, const unsigned int sizeY)
{
  using PixelType = typename TImage::PixelType;
  const auto image = CreateImage<TImage>(sizeX, sizeY);

  const unsigned int numberOfPixels = sizeX * sizeY;

  PixelType * const bufferPointer = image->GetBufferPointer();

  for (unsigned int i = 0; i < numberOfPixels; ++i)
  {
    bufferPointer[i] = static_cast<typename TImage::PixelType>(i + 1);
  }
  return image;
}


template <typename TPixel, unsigned int VImageDimension>
void
SetVectorLengthIfImageIsVectorImage(itk::VectorImage<TPixel, VImageDimension> & image, const unsigned int vectorLength)
{
  image.SetVectorLength(vectorLength);
}


template <typename TPixel, unsigned int VImageDimension>
void
SetVectorLengthIfImageIsVectorImage(itk::Image<TPixel, VImageDimension> & itkNotUsed(image),
                                    const unsigned int                    itkNotUsed(vectorLength))
{
  // Do not set the VectorLength. The specified image is not a VectorImage.
}


template <typename TImage>
typename TImage::Pointer
CreateSmallImage()
{
  const auto                image = TImage::New();
  typename TImage::SizeType imageSize;
  imageSize.Fill(0);
  image->SetRegions(imageSize);
  SetVectorLengthIfImageIsVectorImage(*image, 1);
  image->AllocateInitialized();
  return image;
}


template <typename TImage>
void
ExpectRangeIsEmptyForAnEmptyContainerOfShapeOffsets()
{
  const auto                image = TImage::New();
  typename TImage::SizeType imageSize;
  imageSize.Fill(1);
  image->SetRegions(imageSize);
  SetVectorLengthIfImageIsVectorImage(*image, 1);
  image->Allocate();

  const typename TImage::IndexType location{ {} };

  using OffsetType = typename TImage::OffsetType;

  const std::array<OffsetType, 0> emptyArrayOfOffsets{ {} };
  const std::vector<OffsetType>   emptyVectorOfOffsets{};

  EXPECT_TRUE((ShapedImageNeighborhoodRange<TImage>{ *image, location, emptyArrayOfOffsets }.empty()));
  EXPECT_TRUE((ShapedImageNeighborhoodRange<TImage>{ *image, location, emptyVectorOfOffsets }.empty()));
}


template <typename TImage>
void
ExpectRangeIsNotEmptyForNonEmptyImageAndShapeOffsetContainer()
{
  // First create a non-empty image:
  const auto                image = TImage::New();
  typename TImage::SizeType imageSize;
  imageSize.Fill(1);
  image->SetRegions(imageSize);
  SetVectorLengthIfImageIsVectorImage(*image, 1);
  image->Allocate();

  // Then create a non-empty vector of shape offsets:
  const itk::Size<TImage::ImageDimension>                radius{ { 1 } };
  const std::vector<itk::Offset<TImage::ImageDimension>> shapeOffsets =
    itk::GenerateRectangularImageNeighborhoodOffsets(radius);

  // Sanity check: the container of shape offset is expected to be non-empty.
  EXPECT_FALSE(shapeOffsets.empty());

  const typename TImage::IndexType location{ {} };

  EXPECT_FALSE((ShapedImageNeighborhoodRange<TImage>{ *image, location, shapeOffsets }.empty()));
}


template <typename TImage>
void
ExpectCopyConstructedRangeHasSameIteratorsAsOriginal()
{
  const auto                                             image = CreateSmallImage<TImage>();
  const itk::Size<TImage::ImageDimension>                radius{ { 1 } };
  const std::vector<itk::Offset<TImage::ImageDimension>> shapeOffsets =
    itk::GenerateRectangularImageNeighborhoodOffsets(radius);
  const typename TImage::IndexType           location{ {} };
  const ShapedImageNeighborhoodRange<TImage> originalRange{ *image, location, shapeOffsets };

  RangeGTestUtilities::ExpectCopyConstructedRangeHasSameIteratorsAsOriginal(originalRange);
}


template <typename TImage>
void
ExpectCopyAssignedRangeHasSameIteratorsAsOriginal()
{
  const auto                                             image = CreateSmallImage<TImage>();
  const itk::Size<TImage::ImageDimension>                radius{ { 1 } };
  const std::vector<itk::Offset<TImage::ImageDimension>> shapeOffsets =
    itk::GenerateRectangularImageNeighborhoodOffsets(radius);
  const typename TImage::IndexType           location{ {} };
  const ShapedImageNeighborhoodRange<TImage> originalRange{ *image, location, shapeOffsets };

  RangeGTestUtilities::ExpectCopyAssignedRangeHasSameIteratorsAsOriginal(originalRange);
}


template <typename TImage>
void
ExpectMoveConstructedRangeHasSameIteratorsAsOriginalBeforeMove()
{
  const auto                                             image = CreateSmallImage<TImage>();
  const itk::Size<TImage::ImageDimension>                radius{ { 1 } };
  const std::vector<itk::Offset<TImage::ImageDimension>> shapeOffsets =
    itk::GenerateRectangularImageNeighborhoodOffsets(radius);
  const typename TImage::IndexType location{ {} };

  RangeGTestUtilities::ExpectMoveConstructedRangeHasSameIteratorsAsOriginalBeforeMove(
    ShapedImageNeighborhoodRange<TImage>{ *image, location, shapeOffsets });
}


template <typename TImage>
void
ExpectMoveAssignedRangeHasSameIteratorsAsOriginalBeforeMove()
{
  const auto                                             image = CreateSmallImage<TImage>();
  const itk::Size<TImage::ImageDimension>                radius{ { 1 } };
  const std::vector<itk::Offset<TImage::ImageDimension>> shapeOffsets =
    itk::GenerateRectangularImageNeighborhoodOffsets(radius);
  const typename TImage::IndexType location{ {} };

  RangeGTestUtilities::ExpectMoveConstructedRangeHasSameIteratorsAsOriginalBeforeMove(
    ShapedImageNeighborhoodRange<TImage>{ *image, location, shapeOffsets });
}

} // namespace


// Tests that a begin iterator compares equal to another begin iterator of the
// same range. Also does this test for end iterators.
TEST(ShapedImageNeighborhoodRange, EquivalentBeginOrEndIteratorsCompareEqual)
{
  using ImageType = itk::Image<int>;

  const auto image = CreateImage<ImageType>(2, 3);

  const itk::Size<ImageType::ImageDimension>                radius{ {} };
  const ImageType::IndexType                                location{ {} };
  const std::vector<itk::Offset<ImageType::ImageDimension>> offsets =
    itk::GenerateRectangularImageNeighborhoodOffsets(radius);
  itk::ShapedImageNeighborhoodRange<ImageType> range{ *image, location, offsets };

  const itk::ShapedImageNeighborhoodRange<ImageType>::iterator       begin = range.begin();
  const itk::ShapedImageNeighborhoodRange<ImageType>::iterator       end = range.end();
  const itk::ShapedImageNeighborhoodRange<ImageType>::const_iterator cbegin = range.cbegin();
  const itk::ShapedImageNeighborhoodRange<ImageType>::const_iterator cend = range.cend();

  // An iterator object compares equal to itself:
  EXPECT_EQ(begin, begin);
  EXPECT_EQ(end, end);
  EXPECT_EQ(cbegin, cbegin);
  EXPECT_EQ(cend, cend);

  // Multiple calls of the same function yield equivalent objects:
  EXPECT_EQ(range.begin(), range.begin());
  EXPECT_EQ(range.end(), range.end());
  EXPECT_EQ(range.cbegin(), range.cbegin());
  EXPECT_EQ(range.cend(), range.cend());

  // Corresponding const_iterator and non-const iterator compare equal:
  EXPECT_EQ(begin, cbegin);
  EXPECT_EQ(end, cend);
  EXPECT_EQ(cbegin, begin);
  EXPECT_EQ(cend, end);
}


TEST(ShapedImageNeighborhoodRange, BeginAndEndDoNotCompareEqual)
{
  using ImageType = itk::Image<int>;

  const auto image = CreateImage<ImageType>(2, 3);

  // Note that even with a radius of zero, the neighborhood still has 1 pixel.
  const itk::Size<ImageType::ImageDimension>                radius{ {} };
  const ImageType::IndexType                                location{ {} };
  const std::vector<itk::Offset<ImageType::ImageDimension>> offsets =
    itk::GenerateRectangularImageNeighborhoodOffsets(radius);
  itk::ShapedImageNeighborhoodRange<ImageType> range{ *image, location, offsets };

  EXPECT_FALSE(range.begin() == range.end());
  EXPECT_NE(range.begin(), range.end());
}


// Tests that an iterator converts (implicitly) to a const_iterator.
TEST(ShapedImageNeighborhoodRange, IteratorConvertsToConstIterator)
{
  using ImageType = itk::Image<int>;

  const auto image = CreateImage<ImageType>(2, 3);

  const itk::Size<ImageType::ImageDimension>                radius{ {} };
  const ImageType::IndexType                                location{ {} };
  const std::vector<itk::Offset<ImageType::ImageDimension>> offsets =
    itk::GenerateRectangularImageNeighborhoodOffsets(radius);
  itk::ShapedImageNeighborhoodRange<ImageType> range{ *image, location, offsets };

  const itk::ShapedImageNeighborhoodRange<ImageType>::iterator       begin = range.begin();
  const itk::ShapedImageNeighborhoodRange<ImageType>::const_iterator const_begin_from_begin = begin;
  EXPECT_EQ(const_begin_from_begin, begin);

  const itk::ShapedImageNeighborhoodRange<ImageType>::const_iterator const_begin_from_range_begin = range.begin();
  EXPECT_EQ(const_begin_from_range_begin, range.begin());
}


// Tests that the iterators of a NeigborhoodRange can be used as first and
// second argument of an std::vector constructor.
TEST(ShapedImageNeighborhoodRange, IteratorsCanBePassedToStdVectorConstructor)
{
  using PixelType = unsigned char;
  using ImageType = itk::Image<PixelType>;
  enum
  {
    sizeX = 9,
    sizeY = 11
  };
  const auto image = CreateImageFilledWithSequenceOfNaturalNumbers<ImageType>(sizeX, sizeY);

  const ImageType::IndexType                                location{ {} };
  const itk::Size<ImageType::ImageDimension>                radius = { { 0, 1 } };
  const std::vector<itk::Offset<ImageType::ImageDimension>> offsets =
    itk::GenerateRectangularImageNeighborhoodOffsets(radius);
  itk::ShapedImageNeighborhoodRange<ImageType> range{ *image, location, offsets };

  // Easily store all pixels of the ShapedImageNeighborhoodRange in an std::vector:
  const std::vector<PixelType> stdVector(range.begin(), range.end());
  EXPECT_EQ(stdVector, std::vector<PixelType>(range.cbegin(), range.cend()));
  EXPECT_TRUE(std::equal(stdVector.begin(), stdVector.end(), range.cbegin()));
}


// Tests that the iterators of a NeigborhoodRange can be used as first and
// second argument of std::reverse (which requires bidirectional iterators).
TEST(ShapedImageNeighborhoodRange, IteratorsCanBePassedToStdReverseCopy)
{
  using PixelType = unsigned short;
  using ImageType = itk::Image<PixelType>;
  enum
  {
    sizeX = 9,
    sizeY = 11
  };
  const auto image = CreateImageFilledWithSequenceOfNaturalNumbers<ImageType>(sizeX, sizeY);

  const ImageType::IndexType                                location{ {} };
  const itk::Size<ImageType::ImageDimension>                radius = { { 0, 1 } };
  const std::vector<itk::Offset<ImageType::ImageDimension>> offsets =
    itk::GenerateRectangularImageNeighborhoodOffsets(radius);
  itk::ShapedImageNeighborhoodRange<ImageType> range{ *image, location, offsets };

  const unsigned int numberOfNeighborhoodPixels = 3;
  ASSERT_EQ(numberOfNeighborhoodPixels, range.size());

  const std::vector<PixelType> stdVector(range.begin(), range.end());
  ASSERT_EQ(stdVector.size(), numberOfNeighborhoodPixels);

  std::vector<PixelType> reversedStdVector1(numberOfNeighborhoodPixels);
  std::vector<PixelType> reversedStdVector2(numberOfNeighborhoodPixels);
  std::vector<PixelType> reversedStdVector3(numberOfNeighborhoodPixels);

  // Checks bidirectionality of the ShapedImageNeighborhoodRange iterators!
  std::reverse_copy(stdVector.cbegin(), stdVector.cend(), reversedStdVector1.begin());
  std::reverse_copy(range.begin(), range.end(), reversedStdVector2.begin());
  std::reverse_copy(range.cbegin(), range.cend(), reversedStdVector3.begin());

  // Sanity check
  EXPECT_NE(reversedStdVector1, stdVector);
  EXPECT_NE(reversedStdVector2, stdVector);
  EXPECT_NE(reversedStdVector3, stdVector);

  // The real tests:
  EXPECT_EQ(reversedStdVector1, reversedStdVector2);
  EXPECT_EQ(reversedStdVector1, reversedStdVector3);
}


// Tests that the iterators of a NeigborhoodRange can be used as first and
// second argument of std::inner_product.
TEST(ShapedImageNeighborhoodRange, IteratorsCanBePassedToStdInnerProduct)
{
  using PixelType = unsigned char;
  using ImageType = itk::Image<PixelType>;
  enum
  {
    sizeX = 9,
    sizeY = 11
  };
  const auto image = CreateImageFilledWithSequenceOfNaturalNumbers<ImageType>(sizeX, sizeY);

  const ImageType::IndexType                                location{ {} };
  const itk::Size<ImageType::ImageDimension>                radius = { { 0, 1 } };
  const std::vector<itk::Offset<ImageType::ImageDimension>> offsets =
    itk::GenerateRectangularImageNeighborhoodOffsets(radius);
  itk::ShapedImageNeighborhoodRange<ImageType> range{ *image, location, offsets };

  const double innerProduct = std::inner_product(range.begin(), range.end(), range.begin(), 0.0);

  EXPECT_EQ(innerProduct, 102);
}


// Tests that the iterators of a NeigborhoodRange can be used as first and
// second argument of std::for_each.
TEST(ShapedImageNeighborhoodRange, IteratorsCanBePassedToStdForEach)
{
  using PixelType = unsigned char;
  using ImageType = itk::Image<PixelType>;
  enum
  {
    sizeX = 9,
    sizeY = 11
  };
  const auto image = CreateImageFilledWithSequenceOfNaturalNumbers<ImageType>(sizeX, sizeY);

  const ImageType::IndexType                                location{ {} };
  const itk::Size<ImageType::ImageDimension>                radius = { { 0, 1 } };
  const std::vector<itk::Offset<ImageType::ImageDimension>> offsets =
    itk::GenerateRectangularImageNeighborhoodOffsets(radius);
  itk::ShapedImageNeighborhoodRange<ImageType> range{ *image, location, offsets };

  std::for_each(range.begin(), range.end(), [](const PixelType pixel) { EXPECT_TRUE(pixel > 0); });
}


// Tests that a NeigborhoodRange can be used as the "range expression" of a
// C++11 range-based for loop.
TEST(ShapedImageNeighborhoodRange, CanBeUsedAsExpressionOfRangeBasedForLoop)
{
  using PixelType = unsigned char;
  using ImageType = itk::Image<PixelType>;
  using RangeType = itk::ShapedImageNeighborhoodRange<ImageType>;

  enum
  {
    sizeX = 9,
    sizeY = 11
  };
  const auto image = CreateImageFilledWithSequenceOfNaturalNumbers<ImageType>(sizeX, sizeY);

  const ImageType::IndexType                                location{ {} };
  const itk::Size<ImageType::ImageDimension>                radius = { { 0, 1 } };
  const std::vector<itk::Offset<ImageType::ImageDimension>> offsets =
    itk::GenerateRectangularImageNeighborhoodOffsets(radius);
  RangeType           range{ *image, location, offsets };
  constexpr PixelType reference_value = 42;

  for (const PixelType pixel : range)
  {
    // Initially not set to reference value
    EXPECT_NE(pixel, reference_value);
  }

  // Note: instead of 'iterator::reference', you may also type 'auto&&', but
  // that might trigger a warning, for example from Mac10.13-AppleClang
  // (AppleClang 9.1.0.9020039): "loop variable 'pixel' is always a copy because
  // the range of type 'ShapedImageNeighborhoodRange' does not return a reference"
  // This issue was reported to LLVM by Sean McBride, 2018-05-09, Bug 37392,
  // "Undesirable -Wrange-loop-analysis warning with auto and vector<bool>",
  // https://bugs.llvm.org/show_bug.cgi?id=37392
  for (RangeType::iterator::reference pixel : range)
  {
    pixel = reference_value;
  }

  for (const PixelType pixel : range)
  {
    EXPECT_EQ(pixel, reference_value);
  }
}


// Tests that the distance between two iterators, it1 and it2, can be obtained by
// subtraction (it2 - it1).
TEST(ShapedImageNeighborhoodRange, DistanceBetweenIteratorsCanBeObtainedBySubtraction)
{
  using PixelType = unsigned char;
  using ImageType = itk::Image<PixelType>;
  enum
  {
    sizeX = 9,
    sizeY = 11
  };
  const auto image = CreateImage<ImageType>(sizeX, sizeY);

  const ImageType::IndexType                                location{ {} };
  const itk::Size<ImageType::ImageDimension>                radius = { { 2, 3 } };
  const std::vector<itk::Offset<ImageType::ImageDimension>> offsets =
    itk::GenerateRectangularImageNeighborhoodOffsets(radius);
  itk::ShapedImageNeighborhoodRange<ImageType> range{ *image, location, offsets };

  itk::ShapedImageNeighborhoodRange<ImageType>::iterator it1 = range.begin();

  const size_t numberOfNeighborhoodPixels = range.size();

  for (size_t i1 = 0; i1 < numberOfNeighborhoodPixels; ++i1, ++it1)
  {
    itk::ShapedImageNeighborhoodRange<ImageType>::iterator it2 = it1;

    for (size_t i2 = 0; i2 < numberOfNeighborhoodPixels; ++i2, ++it2)
    {
      EXPECT_EQ(it2 - it1, std::distance(it1, it2));
    }
  }
}


// Tests that ShapedImageNeighborhoodRange::iterator retrieves the same pixel values, in the same order,
// as ConstNeighborhoodIterator.
TEST(ShapedImageNeighborhoodRange, IteratorRetrievesSamePixelValuesAsConstNeighborhoodIterator)
{
  using PixelType = unsigned char;
  using ImageType = itk::Image<PixelType>;
  enum
  {
    sizeX = 9,
    sizeY = 11
  };
  const auto image = CreateImageFilledWithSequenceOfNaturalNumbers<ImageType>(sizeX, sizeY);

  const ImageType::IndexType                                initialLocation{ {} };
  const ImageType::IndexType                                testLocations[] = { { {} }, { { 0, 1 } }, { { 1, 0 } } };
  const itk::Size<ImageType::ImageDimension>                radius = { { 2, 3 } };
  const std::vector<itk::Offset<ImageType::ImageDimension>> offsets =
    itk::GenerateRectangularImageNeighborhoodOffsets(radius);
  itk::ShapedImageNeighborhoodRange<const ImageType> range{ *image, initialLocation, offsets };
  itk::ConstNeighborhoodIterator<ImageType> constNeighborhoodIterator(radius, image, image->GetRequestedRegion());

  for (const auto & location : testLocations)
  {
    constNeighborhoodIterator.SetLocation(location);
    range.SetLocation(location);

    itk::SizeValueType i = 0;

    for (const PixelType pixel : range)
    {
      EXPECT_EQ(pixel, constNeighborhoodIterator.GetPixel(i));
      ++i;
    }
  }
}


// Tests that iterator::reference and const_iterator::reference act like a real
// (built-in) C++ reference to the pixel type.
TEST(ShapedImageNeighborhoodRange, IteratorReferenceActsLikeARealReference)
{
  using PixelType = unsigned char;
  using ImageType = itk::Image<PixelType>;
  enum
  {
    sizeX = 9,
    sizeY = 11
  };
  const auto image = CreateImageFilledWithSequenceOfNaturalNumbers<ImageType>(sizeX, sizeY);
  using RangeType = itk::ShapedImageNeighborhoodRange<ImageType>;

  const ImageType::IndexType                                location = { { 1, 0 } };
  const itk::Size<ImageType::ImageDimension>                radius = { { 1, 0 } };
  const std::vector<itk::Offset<ImageType::ImageDimension>> offsets =
    itk::GenerateRectangularImageNeighborhoodOffsets(radius);
  RangeType           range{ *image, location, offsets };
  RangeType::iterator it = range.begin();

  RangeType::iterator::reference       reference1 = *it;
  RangeType::iterator::reference       reference2 = *(++it);
  RangeType::const_iterator::reference reference3 = *(++it);
  EXPECT_EQ(reference1, 1);
  EXPECT_EQ(reference2, 2);
  EXPECT_EQ(reference3, 3);

  RangeType::const_iterator::reference reference4 = reference1;
  RangeType::const_iterator::reference reference5 = reference2;
  RangeType::const_iterator::reference reference6 = reference3;
  EXPECT_EQ(reference4, 1);
  EXPECT_EQ(reference5, 2);
  EXPECT_EQ(reference6, 3);

  PixelType pixelValue1 = reference1;
  EXPECT_EQ(pixelValue1, reference1);

  reference1 = 42;
  EXPECT_EQ(reference1, 42);

  pixelValue1 = reference1;
  EXPECT_EQ(pixelValue1, 42);

  reference2 = reference1;
  EXPECT_EQ(reference1, 42);
  EXPECT_EQ(reference2, 42);

  reference2 = 0;
  EXPECT_EQ(reference1, 42);
  EXPECT_EQ(reference2, 0);
}


// Tests that ShapedImageNeighborhoodRange<VectorImage<T>> is supported well.
TEST(ShapedImageNeighborhoodRange, SupportsVectorImage)
{
  using ImageType = itk::VectorImage<unsigned char>;
  using PixelType = ImageType::PixelType;
  enum
  {
    vectorLength = 2,
    sizeX = 9,
    sizeY = 11,
    sizeZ = 3
  };
  const auto                         image = ImageType::New();
  const typename ImageType::SizeType imageSize = { { sizeX, sizeY, sizeZ } };
  image->SetRegions(imageSize);
  image->SetVectorLength(vectorLength);
  image->AllocateInitialized();
  PixelType fillPixelValue(vectorLength);
  fillPixelValue.Fill(42);
  image->FillBuffer(fillPixelValue);

  const ImageType::IndexType                                location = { { 0, 1 } };
  const itk::Size<ImageType::ImageDimension>                radius = { { 0, 1 } };
  const std::vector<itk::Offset<ImageType::ImageDimension>> offsets =
    itk::GenerateRectangularImageNeighborhoodOffsets(radius);

  using RangeType = itk::ShapedImageNeighborhoodRange<ImageType>;
  RangeType range{ *image, location, offsets };

  for (PixelType pixelValue : range)
  {
    EXPECT_EQ(pixelValue, fillPixelValue);
  }

  PixelType otherPixelValue(vectorLength);
  otherPixelValue.Fill(1);
  image->SetPixel({ {} }, otherPixelValue);

  RangeType::const_iterator it = range.begin();
  const PixelType           firstPixelValueFromRange = *it;
  EXPECT_EQ(firstPixelValueFromRange, otherPixelValue);
  ++it;
  const PixelType secondPixelValueFromRange = *it;
  EXPECT_EQ(secondPixelValueFromRange, fillPixelValue);
}


TEST(ShapedImageNeighborhoodRange, IteratorsCanBePassedToStdSort)
{
  using PixelType = unsigned char;
  using ImageType = itk::Image<PixelType>;
  enum
  {
    sizeX = 3,
    sizeY = 3
  };
  const auto image = CreateImageFilledWithSequenceOfNaturalNumbers<ImageType>(sizeX, sizeY);

  const ImageType::IndexType                                location{ { 1, 1 } };
  const itk::Size<ImageType::ImageDimension>                radius = { { 1, 1 } };
  const std::vector<itk::Offset<ImageType::ImageDimension>> offsets =
    itk::GenerateRectangularImageNeighborhoodOffsets(radius);
  itk::ShapedImageNeighborhoodRange<ImageType> range{ *image, location, offsets };

  // Initial order: (1, 2, 3, ..., 9).
  const std::vector<PixelType> initiallyOrderedPixels(range.cbegin(), range.cend());
  const std::vector<PixelType> reverseOrderedPixels(initiallyOrderedPixels.rbegin(), initiallyOrderedPixels.rend());

  // Sanity checks before doing the "real" tests:
  EXPECT_EQ(std::vector<PixelType>(range.cbegin(), range.cend()), initiallyOrderedPixels);
  EXPECT_NE(std::vector<PixelType>(range.cbegin(), range.cend()), reverseOrderedPixels);

  // Test std::sort with predicate (lambda expression), to revert the order:
  std::sort(range.begin(), range.end(), [](PixelType lhs, PixelType rhs) { return rhs < lhs; });
  EXPECT_EQ(std::vector<PixelType>(range.cbegin(), range.cend()), reverseOrderedPixels);

  // Test std::sort without predicate, to go back to the initial order (1, 2, 3, ..., 9):
  std::sort(range.begin(), range.end());
  EXPECT_EQ(std::vector<PixelType>(range.cbegin(), range.cend()), initiallyOrderedPixels);
}


TEST(ShapedImageNeighborhoodRange, IteratorsCanBePassedToStdNthElement)
{
  using PixelType = unsigned char;
  using ImageType = itk::Image<PixelType>;
  enum
  {
    sizeX = 3,
    sizeY = 3
  };
  const auto image = CreateImageFilledWithSequenceOfNaturalNumbers<ImageType>(sizeX, sizeY);

  const ImageType::IndexType                                location{ { 1, 1 } };
  const itk::Size<ImageType::ImageDimension>                radius = { { 1, 1 } };
  const std::vector<itk::Offset<ImageType::ImageDimension>> offsets =
    itk::GenerateRectangularImageNeighborhoodOffsets(radius);
  itk::ShapedImageNeighborhoodRange<ImageType> range{ *image, location, offsets };

  std::reverse(range.begin(), range.end());

  std::vector<PixelType> pixels(range.cbegin(), range.cend());

  // The 'n' to be used with 'nth_element':
  const size_t n = pixels.size() / 2;

  std::nth_element(pixels.begin(), pixels.begin() + n, pixels.end());

  // Sanity check, before the "real" test:
  EXPECT_NE(std::vector<PixelType>(range.cbegin(), range.cend()), pixels);

  // nth_element on the range should rearrange the pixels in the same way as
  // it did on the std::vector of pixels.
  std::nth_element(range.begin(), range.begin() + n, range.end());
  EXPECT_EQ(std::vector<PixelType>(range.cbegin(), range.cend()), pixels);
}


TEST(ShapedImageNeighborhoodRange, IteratorIsDefaultConstructible)
{
  RangeGTestUtilities::ExpectIteratorIsDefaultConstructible<itk::ShapedImageNeighborhoodRange<itk::Image<int>>>();
}


TEST(ShapedImageNeighborhoodRange, IteratorsSupportRandomAccess)
{
  using PixelType = unsigned char;
  using ImageType = itk::Image<PixelType>;
  using RangeType = itk::ShapedImageNeighborhoodRange<ImageType>;
  enum
  {
    sizeX = 3,
    sizeY = 3
  };
  const auto image = CreateImageFilledWithSequenceOfNaturalNumbers<ImageType>(sizeX, sizeY);

  const ImageType::IndexType                                location{ { 1, 1 } };
  const itk::Size<ImageType::ImageDimension>                radius = { { 1, 1 } };
  const std::vector<itk::Offset<ImageType::ImageDimension>> offsets =
    itk::GenerateRectangularImageNeighborhoodOffsets(radius);
  RangeType range{ *image, location, offsets };

  // Testing expressions from Table 111 "Random access iterator requirements
  // (in addition to bidirectional iterator)", C++11 Standard, section 24.2.7
  // "Random access iterator" [random.access.iterators].

  // Note: The 1-letter identifiers (X, a, b, n, r) and the operational semantics
  // are directly from the C++11 Standard.
  using X = RangeType::iterator;
  X a = range.begin();
  X b = range.end();

  const X initialIterator = range.begin();
  X       mutableIterator = initialIterator;
  X &     r = mutableIterator;

  using difference_type = X::difference_type;
  using reference = X::reference;

  {
    // Expression to be tested: 'r += n'
    difference_type n = 3;

    static_assert(std::is_same_v<decltype(r += n), X &>, "Return type tested");

    r = initialIterator;
    const auto expectedResult = [&r, n] {
      // Operational semantics, as specified by the C++11 Standard:
      difference_type m = n;
      if (m >= 0)
        while (m--)
          ++r;
      else
        while (m++)
          --r;
      return r;
    }();
    r = initialIterator;
    const auto actualResult = r += n;
    EXPECT_EQ(actualResult, expectedResult);
  }
  {
    // Expressions to be tested: 'a + n' and 'n + a'
    difference_type n = 3;

    static_assert(std::is_same_v<decltype(a + n), X>, "Return type tested");
    static_assert(std::is_same_v<decltype(n + a), X>, "Return type tested");

    const auto expectedResult = [a, n] {
      // Operational semantics, as specified by the C++11 Standard:
      X tmp = a;
      return tmp += n;
    }();

    EXPECT_EQ(a + n, expectedResult);
    EXPECT_TRUE(a + n == n + a);
  }
  {
    // Expression to be tested: 'r -= n'
    difference_type n = 3;

    static_assert(std::is_same_v<decltype(r -= n), X &>, "Return type tested");

    r = initialIterator;
    const auto expectedResult = [&r, n] {
      // Operational semantics, as specified by the C++11 Standard:
      return r += -n;
    }();
    r = initialIterator;
    const auto actualResult = r -= n;
    EXPECT_EQ(actualResult, expectedResult);
  }
  {
    // Expression to be tested: 'a - n'
    difference_type n = -3;

    static_assert(std::is_same_v<decltype(a - n), X>, "Return type tested");

    const auto expectedResult = [a, n] {
      // Operational semantics, as specified by the C++11 Standard:
      X tmp = a;
      return tmp -= n;
    }();

    EXPECT_EQ(a - n, expectedResult);
  }
  {
    // Expression to be tested: 'b - a'
    static_assert(std::is_same_v<decltype(b - a), difference_type>, "Return type tested");

    difference_type n = b - a;
    EXPECT_TRUE(a + n == b);
    EXPECT_TRUE(b == a + (b - a));
  }
  {
    // Expression to be tested: 'a[n]'
    difference_type n = 3;
    static_assert(std::is_convertible_v<decltype(a[n]), reference>, "Return type tested");
    EXPECT_EQ(a[n], *(a + n));
  }
  {
    // Expressions to be tested: 'a < b', 'a > b', 'a >= b', and 'a <= b':
    static_assert(std::is_convertible_v<decltype(a < b), bool>, "Return type tested");
    static_assert(std::is_convertible_v<decltype(a > b), bool>, "Return type tested");
    static_assert(std::is_convertible_v<decltype(a >= b), bool>, "Return type tested");
    static_assert(std::is_convertible_v<decltype(a <= b), bool>, "Return type tested");
    EXPECT_EQ(a<b, b - a> 0);
    EXPECT_EQ(a > b, b < a);
    EXPECT_EQ(a >= b, !(a < b));
    EXPECT_EQ(a <= b, !(b < a));
  }
}


TEST(ShapedImageNeighborhoodRange, SupportsSubscript)
{
  using PixelType = unsigned char;
  using ImageType = itk::Image<PixelType>;
  using RangeType = itk::ShapedImageNeighborhoodRange<ImageType>;

  enum
  {
    sizeX = 3,
    sizeY = 3
  };
  const auto image = CreateImageFilledWithSequenceOfNaturalNumbers<ImageType>(sizeX, sizeY);

  const ImageType::IndexType                                location{ { 1, 1 } };
  const itk::Size<ImageType::ImageDimension>                radius = { { 1, 1 } };
  const std::vector<itk::Offset<ImageType::ImageDimension>> offsets =
    itk::GenerateRectangularImageNeighborhoodOffsets(radius);
  RangeType range{ *image, location, offsets };

  const size_t numberOfNeighbors = range.size();

  RangeType::iterator it = range.begin();

  for (size_t i = 0; i < numberOfNeighbors; ++i)
  {
    RangeType::iterator::reference neighbor = range[i];
    EXPECT_EQ(neighbor, *it);
    ++it;
  }
}


TEST(ShapedImageNeighborhoodRange, ProvidesReverseIterators)
{
  using PixelType = unsigned short;
  using ImageType = itk::Image<PixelType>;
  using RangeType = itk::ShapedImageNeighborhoodRange<ImageType>;
  enum
  {
    sizeX = 9,
    sizeY = 11
  };
  const auto image = CreateImageFilledWithSequenceOfNaturalNumbers<ImageType>(sizeX, sizeY);

  const ImageType::IndexType                                location{ {} };
  const itk::Size<ImageType::ImageDimension>                radius = { { 0, 1 } };
  const std::vector<itk::Offset<ImageType::ImageDimension>> offsets =
    itk::GenerateRectangularImageNeighborhoodOffsets(radius);
  RangeType range{ *image, location, offsets };

  constexpr unsigned int numberOfNeighborhoodPixels = 3;
  ASSERT_EQ(numberOfNeighborhoodPixels, range.size());

  const std::vector<PixelType> stdVector(range.begin(), range.end());
  ASSERT_EQ(stdVector.size(), numberOfNeighborhoodPixels);

  std::vector<PixelType> reversedStdVector1(numberOfNeighborhoodPixels);
  std::vector<PixelType> reversedStdVector2(numberOfNeighborhoodPixels);
  std::vector<PixelType> reversedStdVector3(numberOfNeighborhoodPixels);

  std::reverse_copy(stdVector.cbegin(), stdVector.cend(), reversedStdVector1.begin());

  const RangeType::const_reverse_iterator crbegin = range.crbegin();
  const RangeType::const_reverse_iterator crend = range.crend();
  const RangeType::reverse_iterator       rbegin = range.rbegin();
  const RangeType::reverse_iterator       rend = range.rend();

  EXPECT_EQ(crbegin, rbegin);
  EXPECT_EQ(crend, rend);

  std::copy(crbegin, crend, reversedStdVector2.begin());
  std::copy(rbegin, rend, reversedStdVector3.begin());

  // Sanity check
  EXPECT_NE(reversedStdVector1, stdVector);
  EXPECT_NE(reversedStdVector2, stdVector);
  EXPECT_NE(reversedStdVector3, stdVector);

  // The real tests:
  EXPECT_EQ(reversedStdVector1, reversedStdVector2);
  EXPECT_EQ(reversedStdVector1, reversedStdVector3);
}


TEST(ShapedImageNeighborhoodRange, ConstructorSupportsRValueShapeOffsets)
{
  using ImageType = itk::Image<unsigned char>;
  using RangeType = itk::ShapedImageNeighborhoodRange<ImageType>;
  using OffsetType = ImageType::OffsetType;

  const auto                 image = CreateImage<ImageType>(1, 2);
  const ImageType::IndexType location{ { 1, 1 } };

  // Note that the expression 'std::vector<OffsetType>{1}' is an rvalue.
  // The code is carefully written so that this rvalue remains alive while
  // the range 'RangeType{...}' is being used.
  ASSERT_EQ((RangeType{ *image, location, std::vector<OffsetType>{ 1 } }).size(), 1);
}


// Tests that the shape of the neighborhood can be specified by a C-array of offsets.
TEST(ShapedImageNeighborhoodRange, ConstructorSupportsCArrayOfShapeOffsets)
{
  using ImageType = itk::Image<unsigned char>;
  using RangeType = itk::ShapedImageNeighborhoodRange<ImageType>;
  using OffsetType = ImageType::OffsetType;

  const auto                 image = CreateImageFilledWithSequenceOfNaturalNumbers<ImageType>(1, 2);
  const ImageType::IndexType location{ { 1, 1 } };

  // A rather arbitrary shape, specified by a C-array of offsets.
  const OffsetType arrayOfShapeOffsets[] = { OffsetType{}, itk::MakeFilled<OffsetType>(1) };

  // An std::vector that represents the very same shape.
  const std::vector<OffsetType> vectorOfShapeOffsets(std::begin(arrayOfShapeOffsets), std::end(arrayOfShapeOffsets));

  const RangeType rangeFromArrayOfShapeOffsets(*image, location, arrayOfShapeOffsets);
  const RangeType rangeFromVectorOfShapeOffsets(*image, location, vectorOfShapeOffsets);

  // Assert that both ranges iterate over the same neighborhood.
  ASSERT_TRUE(std::equal(rangeFromArrayOfShapeOffsets.cbegin(),
                         rangeFromArrayOfShapeOffsets.cend(),
                         rangeFromVectorOfShapeOffsets.cbegin(),
                         rangeFromVectorOfShapeOffsets.cend()));
}


// Tests that an arbitrary (possibly non-zero) index of the buffered region is supported.
TEST(ShapedImageNeighborhoodRange, SupportsArbitraryBufferedRegionIndex)
{
  using ImageType = itk::Image<int>;

  // Do zero-padding for neighborhood pixels outside the image:
  using PolicyType = itk::ConstantBoundaryImageNeighborhoodPixelAccessPolicy<ImageType>;
  using RangeType = itk::ShapedImageNeighborhoodRange<ImageType, PolicyType>;

  // A minimal radius, and trivial shape offsets (n = 1), just for the test.
  const itk::Size<ImageType::ImageDimension> radius = { { 0 } };
  const auto                                 offsets = itk::GenerateRectangularImageNeighborhoodOffsets(radius);

  const ImageType::IndexType zeroIndex{ { 0 } };
  const ImageType::IndexType arbitraryIndex{ { 10, -1 } };
  const ImageType::SizeType  imageSize{ { 2, 3 } };

  const ImageType::RegionType bufferedRegion{ arbitraryIndex, imageSize };

  const auto image = ImageType::New();
  image->SetRegions(bufferedRegion);
  image->AllocateInitialized();

  // Set a 'magic value' at the begin of the buffered region.
  const ImageType::PixelType   magicPixelValue = 42;
  ImageType::PixelType * const bufferPointer = image->GetBufferPointer();
  *bufferPointer = magicPixelValue;

  RangeType range{ *image, zeroIndex, offsets };

  // Expect zero, because zeroIndex is outside the buffered region.
  EXPECT_EQ(range[0], 0);

  range.SetLocation(arbitraryIndex);

  // Expect the magic value as the first range value, because the range is now
  // located at the arbitrary index, which corresponds to the begin of the
  // image buffer.
  EXPECT_EQ(range[0], magicPixelValue);

  // Expect the magic value also when a range is constructed with
  // the arbitrary index as its location.
  EXPECT_EQ((RangeType{ *image, arbitraryIndex, offsets })[0], magicPixelValue);

  // Check to see that this range yields the same pixel value as an
  // itk::ConstNeighborhoodIterator with this arbitrary buffered region index.
  using ConstNeighborhoodIteratorType =
    itk::ConstNeighborhoodIterator<ImageType, itk::ConstantBoundaryCondition<ImageType>>;
  ConstNeighborhoodIteratorType neighborhoodIterator(radius, image, image->GetRequestedRegion());

  // Note: Set NeedToUseBoundaryCondition, to ensure that 'neighborhoodIterator'
  // also supports any arbitrary buffered region index at any location!
  neighborhoodIterator.NeedToUseBoundaryConditionOn();

  range.SetLocation(zeroIndex);
  neighborhoodIterator.SetLocation(zeroIndex);
  EXPECT_EQ(range[0], neighborhoodIterator.GetPixel(0));

  range.SetLocation(arbitraryIndex);
  neighborhoodIterator.SetLocation(arbitraryIndex);
  EXPECT_EQ(range[0], neighborhoodIterator.GetPixel(0));
}


// Tests that begin() == end() for a default-constructed range.
TEST(ShapedImageNeighborhoodRange, BeginIsEndWhenDefaultConstructed)
{
  RangeGTestUtilities::ExpectBeginIsEndWhenRangeIsDefaultConstructed<ShapedImageNeighborhoodRange<itk::Image<int>>>();
  RangeGTestUtilities::ExpectBeginIsEndWhenRangeIsDefaultConstructed<
    ShapedImageNeighborhoodRange<itk::VectorImage<int>>>();
}


// Tests that size() returns 0 for a default-constructed range.
TEST(ShapedImageNeighborhoodRange, SizeIsZeroWhenDefaultConstructed)
{
  RangeGTestUtilities::ExpectZeroSizeWhenRangeIsDefaultConstructed<ShapedImageNeighborhoodRange<itk::Image<int>>>();
  RangeGTestUtilities::ExpectZeroSizeWhenRangeIsDefaultConstructed<
    ShapedImageNeighborhoodRange<itk::VectorImage<int>>>();
}


// Tests empty() for a default-constructed range.
TEST(ShapedImageNeighborhoodRange, IsEmptyWhenDefaultConstructed)
{
  RangeGTestUtilities::ExpectRangeIsEmptyWhenDefaultConstructed<ShapedImageNeighborhoodRange<itk::Image<int>>>();
  RangeGTestUtilities::ExpectRangeIsEmptyWhenDefaultConstructed<ShapedImageNeighborhoodRange<itk::VectorImage<int>>>();
}


// Tests range.empty() for an empty container of shape offsets.
TEST(ShapedImageNeighborhoodRange, IsEmptyForAnEmptyContainerOfShapeOffsets)
{
  ExpectRangeIsEmptyForAnEmptyContainerOfShapeOffsets<itk::Image<int>>();
  ExpectRangeIsEmptyForAnEmptyContainerOfShapeOffsets<itk::VectorImage<int>>();
}


// Tests that range.empty() returns false for a non-empty image, with a
// non-empty container of shape offsets.
TEST(ShapedImageNeighborhoodRange, IsNotEmptyWhenImageAndShapeOffsetContainerAreNonEmpty)
{
  ExpectRangeIsNotEmptyForNonEmptyImageAndShapeOffsetContainer<itk::Image<int>>();
  ExpectRangeIsNotEmptyForNonEmptyImageAndShapeOffsetContainer<itk::VectorImage<int>>();
}


// Tests that a copy-constructed range has the same iterators (begin and end) as the original.
TEST(ShapedImageNeighborhoodRange, CopyConstructedRangeHasSameIterators)
{
  ExpectCopyConstructedRangeHasSameIteratorsAsOriginal<itk::Image<int>>();
  ExpectCopyConstructedRangeHasSameIteratorsAsOriginal<itk::VectorImage<int>>();
}


// Tests that a copy-assigned range has the same iterators (begin and end) as the original.
TEST(ShapedImageNeighborhoodRange, CopyAssignedRangeHasSameIterators)
{
  ExpectCopyAssignedRangeHasSameIteratorsAsOriginal<itk::Image<int>>();
  ExpectCopyAssignedRangeHasSameIteratorsAsOriginal<itk::VectorImage<int>>();
}


// Tests that a move-constructed range has the same iterators as the original, before the move.
TEST(ShapedImageNeighborhoodRange, MoveConstructedRangeHasSameIterators)
{
  ExpectMoveConstructedRangeHasSameIteratorsAsOriginalBeforeMove<itk::Image<int>>();
  ExpectMoveConstructedRangeHasSameIteratorsAsOriginalBeforeMove<itk::VectorImage<int>>();
}


// Tests that a move-assigned range has the same iterators as the original, before the move.
TEST(ShapedImageNeighborhoodRange, MoveAssignedRangeHasSameIterators)
{
  ExpectMoveAssignedRangeHasSameIteratorsAsOriginalBeforeMove<itk::Image<int>>();
  ExpectMoveAssignedRangeHasSameIteratorsAsOriginalBeforeMove<itk::VectorImage<int>>();
}