1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
/**
*
* This program illustrates the use of Versors
*
* Versors are Unit Quaternions used to represent
* rotations.
*
*/
#include "itkVersor.h"
#include <iostream>
itk::Matrix<double, 3, 3>
TestCreateRotationMatrixFromAngles(const double alpha, const double beta, const double gamma)
{
// alpha is rotate the X axis -- Attitude
// beta is rotate the Y axis -- Bank
// gamma is rotate the Z axis -- Heading
const double ca = std::cos(alpha);
const double sa = std::sin(alpha);
const double cb = std::cos(beta);
const double sb = std::sin(beta);
const double cg = std::cos(gamma);
const double sg = std::sin(gamma);
itk::Matrix<double, 3, 3> R;
R(0, 0) = cb * cg;
R(0, 1) = -ca * sg + sa * sb * cg;
R(0, 2) = sa * sg + ca * sb * cg;
R(1, 0) = cb * sg;
R(1, 1) = ca * cg + sa * sb * sg;
R(1, 2) = -sa * cg + ca * sb * sg;
R(2, 0) = -sb;
R(2, 1) = sa * cb;
R(2, 2) = ca * cb;
itk::Matrix<double, 3, 3>::InternalMatrixType test = R.GetVnlMatrix() * R.GetTranspose();
if (!test.is_identity(1.0e-10))
{
std::cout << "Computed matrix is not orthogonal!!!" << std::endl;
std::cout << R << std::endl;
}
return R;
}
itk::Versor<double>
TestCreateRotationVersorFromAngles(const double alpha, const double beta, const double gamma)
{
// https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles
// psi = alpha is rotate the X axis -- Attitude
// theta= beta is rotate the Y axis -- Bank
// phi= gamma is rotate the Z axis -- Heading
const double cha = std::cos(alpha * 0.5);
const double chb = std::cos(beta * 0.5);
const double chg = std::cos(gamma * 0.5);
const double sha = std::sin(alpha * 0.5);
const double shb = std::sin(beta * 0.5);
const double shg = std::sin(gamma * 0.5);
vnl_vector_fixed<double, 4> q;
q[0] = cha * chb * chg + sha * shb * shg;
q[1] = sha * chb * chg - cha * shb * shg;
q[2] = cha * shb * chg + sha * chb * shg;
q[3] = cha * chb * shg - sha * shb * chg;
itk::Versor<double> v;
v.Set(q[1], q[2], q[3], q[0]);
std::cout << "versor: " << v << std::endl;
return v;
}
/**
* This test that the conversion to and from Rotation Matrix and
* Versor produces consistent results.
*/
int
RotationMatrixToVersorTest()
{
int errorCount = 0;
// const double onedegree=1e-10*itk::Math::pi/180.0;
const double onedegree = itk::Math::pi / 180.0;
// const double td=180.0/itk::Math::pi;
double centers[6];
centers[0] = 0;
centers[1] = itk::Math::pi * 0.25;
centers[2] = itk::Math::pi * 0.5;
centers[3] = itk::Math::pi;
centers[4] = itk::Math::pi * 1.5;
centers[5] = itk::Math::pi * 2.0;
constexpr double steps = 0;
const double small_degree_steps = onedegree / 1000.0; // 1/1000 of a degree
for (double center : centers)
{
for (double alpha = center - steps * small_degree_steps; alpha <= center + steps * small_degree_steps;
alpha += small_degree_steps)
{
for (double beta = center - steps * small_degree_steps; beta <= center + steps * small_degree_steps;
beta += small_degree_steps)
{
for (double gamma = center - steps * small_degree_steps; gamma <= center + steps * small_degree_steps;
gamma += small_degree_steps)
{
itk::Matrix<double, 3, 3> MR = TestCreateRotationMatrixFromAngles(alpha, beta, gamma);
itk::Versor<double> VR = TestCreateRotationVersorFromAngles(alpha, beta, gamma);
itk::Point<double, 3> testPoint;
testPoint[0] = -1020.27;
testPoint[1] = 3.21;
testPoint[2] = 1000.786432;
itk::Versor<double> VFROMMR;
VFROMMR.Set(MR);
itk::Matrix<double, 3, 3> VRMatrix = VR.GetMatrix();
const itk::Point<double, 3> newMRtestPoint = (MR)*testPoint;
const itk::Point<double, 3> newVRtestPoint = (VRMatrix)*testPoint;
const itk::Point<double, 3> newVRFROMMRPoint = (VFROMMR.GetMatrix()) * testPoint;
const itk::Point<double, 3> newVRFROMMRTransformPoint = VFROMMR.Transform(testPoint);
const double error_newMRtestPoint_newVRtestPoint = (newMRtestPoint - newVRtestPoint).GetNorm();
const double error_newMRtestPoint_newVRFROMMRPoint = (newMRtestPoint - newVRFROMMRPoint).GetNorm();
const double error_newVRFROMMRPoint_newVRFROMMRTransformPoint =
(newVRFROMMRPoint - newVRFROMMRTransformPoint).GetNorm();
const double maxAllowedPointError = 1e-5;
if ((error_newMRtestPoint_newVRtestPoint + error_newMRtestPoint_newVRFROMMRPoint +
error_newVRFROMMRPoint_newVRFROMMRTransformPoint) > maxAllowedPointError)
{
std::cout << "(alpha,beta,gamma)= (" << alpha << ',' << beta << ',' << gamma << ')' << std::endl;
std::cout << newMRtestPoint << ' ' << newVRtestPoint << ' ' << newVRFROMMRPoint << ' '
<< newVRFROMMRTransformPoint << std::endl;
std::cout << "ERRORS: " << error_newMRtestPoint_newVRtestPoint << ' '
<< error_newMRtestPoint_newVRFROMMRPoint << ' '
<< error_newVRFROMMRPoint_newVRFROMMRTransformPoint << std::endl;
std::cout << "MR=\n"
<< MR << "\nVR=\n"
<< VR.GetMatrix() << "\nVFROMMR=\n"
<< VFROMMR.GetMatrix() << std::endl;
errorCount++;
}
}
}
}
}
return errorCount;
}
//-------------------------
//
// Main code
//
//-------------------------
int
itkVersorTest(int, char *[])
{
using ValueType = double;
const ValueType epsilon = 1e-12;
// Versor type
using VersorType = itk::Versor<ValueType>;
// Vector type
using VectorType = VersorType::VectorType;
// Point type
using PointType = VersorType::PointType;
// Covariant Vector type
using CovariantVectorType = VersorType::CovariantVectorType;
// VnlVector type
using VnlVectorType = VersorType::VnlVectorType;
// VnlQuaternion type
using VnlQuaternionType = VersorType::VnlQuaternionType;
// Matrix type
using MatrixType = VersorType::MatrixType;
{
std::cout << "Test default constructor... ";
VersorType qa;
if (itk::Math::abs(qa.GetX()) > epsilon)
{
std::cout << "Error ! " << std::endl;
return EXIT_FAILURE;
}
if (itk::Math::abs(qa.GetY()) > epsilon)
{
std::cout << "Error ! " << std::endl;
return EXIT_FAILURE;
}
if (itk::Math::abs(qa.GetZ()) > epsilon)
{
std::cout << "Error ! " << std::endl;
return EXIT_FAILURE;
}
if (itk::Math::abs(qa.GetW() - 1.0) > epsilon)
{
std::cout << "Error ! " << std::endl;
return EXIT_FAILURE;
}
std::cout << " PASSED !" << std::endl;
}
{
std::cout << "Test initialization and GetMatrix()... ";
VersorType qa;
qa.SetIdentity();
MatrixType ma = qa.GetMatrix();
std::cout << "Matrix = " << std::endl;
std::cout << ma << std::endl;
}
{
std::cout << "Test for setting Axis (0,0,0) and Angle...";
VersorType qa;
VectorType xa;
xa[0] = 0.0;
xa[1] = 0.0;
xa[2] = 0.0;
ValueType angle = 0;
try
{
qa.Set(xa, angle);
return EXIT_FAILURE;
} // setting the axis to (0,0,0) should throw an exception
catch (const itk::ExceptionObject & excp)
{
std::cout << "Caught expected exception: " << excp;
std::cout << " PASSED !" << std::endl;
}
}
{
std::cout << "Test for setting Axis and Angle...";
VersorType qa;
VectorType xa;
xa[0] = 2.5;
xa[1] = 1.5;
xa[2] = 0.5;
ValueType angle = std::atan(1.0) / 3.0; // 15 degrees in radians
qa.Set(xa, angle);
xa.Normalize();
ValueType cosangle = std::cos(angle / 2.0);
ValueType sinangle = std::sin(angle / 2.0);
VectorType xb;
xb = xa * sinangle;
if (itk::Math::abs(qa.GetX() - xb[0]) > epsilon)
{
std::cout << "Error in X ! " << std::endl;
return EXIT_FAILURE;
}
if (itk::Math::abs(qa.GetY() - xb[1]) > epsilon)
{
std::cout << "Error in Y ! " << std::endl;
return EXIT_FAILURE;
}
if (itk::Math::abs(qa.GetZ() - xb[2]) > epsilon)
{
std::cout << "Error in Z ! " << std::endl;
return EXIT_FAILURE;
}
if (itk::Math::abs(qa.GetW() - cosangle) > epsilon)
{
std::cout << "Error in W ! " << std::endl;
return EXIT_FAILURE;
}
if (itk::Math::abs(qa.GetAngle() - angle) > epsilon)
{
std::cout << "Error in Angle ! " << std::endl;
return EXIT_FAILURE;
}
std::cout << " PASSED !" << std::endl;
}
{
std::cout << "Test for setting Right part...";
ValueType angle = std::atan(1.0) * 30.0 / 45.0;
ValueType sin2a = std::sin(angle / 2.0);
VectorType xa;
xa[0] = 0.7;
xa[1] = 0.3;
xa[2] = 0.1;
xa.Normalize();
xa *= sin2a;
VersorType qa;
qa.Set(xa, angle);
ValueType cos2a = std::cos(angle / 2.0);
if (itk::Math::abs(qa.GetW() - cos2a) > epsilon)
{
std::cout << "Error in W ! " << std::endl;
std::cout << "W= " << qa.GetW();
std::cout << " it should be " << cos2a << std::endl;
return EXIT_FAILURE;
}
if (itk::Math::abs(qa.GetAngle() - angle) > epsilon)
{
std::cout << "Error in Angle ! " << std::endl;
return EXIT_FAILURE;
}
std::cout << " PASSED !" << std::endl;
}
{
std::cout << "Test for Square Root...";
ValueType angle = std::atan(1.0) * 30.0 / 45.0;
ValueType sin2a = std::sin(angle / 2.0);
VectorType xa;
xa[0] = 0.7;
xa[1] = 0.3;
xa[2] = 0.1;
xa.Normalize();
xa *= sin2a;
VersorType qa;
qa.Set(xa, angle);
VersorType qb;
qb = qa.SquareRoot();
if (itk::Math::abs(qa.GetAngle() - 2.0 * qb.GetAngle()) > epsilon)
{
std::cout << "Error in Square Root ! " << std::endl;
std::cout << "Angle = " << qb.GetAngle();
std::cout << " it should be " << qa.GetAngle() / 2.0 << std::endl;
return EXIT_FAILURE;
}
std::cout << " PASSED !" << std::endl;
}
{
std::cout << "Test for Transforming a vector...";
VectorType xa;
xa[0] = 2.5;
xa[1] = 2.5;
xa[2] = 2.5;
ValueType angle = 8.0 * std::atan(1.0) / 3.0; // 120 degrees in radians
VersorType qa;
qa.Set(xa, angle);
VectorType::ValueType xbInit[3] = { 3.0, 7.0, 9.0 };
VectorType xb = xbInit;
VectorType xc = qa.Transform(xb);
// This rotation will just permute the axis
if (itk::Math::abs(xc[1] - xb[0]) > epsilon)
{
std::cout << "Error in X ! " << std::endl;
return EXIT_FAILURE;
}
if (itk::Math::abs(xc[2] - xb[1]) > epsilon)
{
std::cout << "Error in Y ! " << std::endl;
return EXIT_FAILURE;
}
if (itk::Math::abs(xc[0] - xb[2]) > epsilon)
{
std::cout << "Error in Z ! " << std::endl;
return EXIT_FAILURE;
}
std::cout << " PASSED !" << std::endl;
}
{
std::cout << "Test for Transforming a point...";
VectorType xa;
xa[0] = 2.5;
xa[1] = 2.5;
xa[2] = 2.5;
ValueType angle = 8.0 * std::atan(1.0) / 3.0; // 120 degrees in radians
VersorType qa;
qa.Set(xa, angle);
PointType::ValueType xbInit[3] = { 3.0, 7.0, 9.0 };
PointType xb = xbInit;
PointType xc = qa.Transform(xb);
// This rotation will just permute the axis
if (itk::Math::abs(xc[1] - xb[0]) > epsilon)
{
std::cout << "Error in X ! " << std::endl;
return EXIT_FAILURE;
}
if (itk::Math::abs(xc[2] - xb[1]) > epsilon)
{
std::cout << "Error in Y ! " << std::endl;
return EXIT_FAILURE;
}
if (itk::Math::abs(xc[0] - xb[2]) > epsilon)
{
std::cout << "Error in Z ! " << std::endl;
return EXIT_FAILURE;
}
std::cout << " PASSED !" << std::endl;
}
{
std::cout << "Test for Transforming a covariantvector...";
VectorType xa;
xa[0] = 2.5;
xa[1] = 2.5;
xa[2] = 2.5;
ValueType angle = 8.0 * std::atan(1.0) / 3.0; // 120 degrees in radians
VersorType qa;
qa.Set(xa, angle);
CovariantVectorType::ValueType xbInit[3] = { 3.0, 7.0, 9.0 };
CovariantVectorType xb = xbInit;
CovariantVectorType xc = qa.Transform(xb);
// This rotation will just permute the axis
if (itk::Math::abs(xc[1] - xb[0]) > epsilon)
{
std::cout << "Error in X ! " << std::endl;
return EXIT_FAILURE;
}
if (itk::Math::abs(xc[2] - xb[1]) > epsilon)
{
std::cout << "Error in Y ! " << std::endl;
return EXIT_FAILURE;
}
if (itk::Math::abs(xc[0] - xb[2]) > epsilon)
{
std::cout << "Error in Z ! " << std::endl;
return EXIT_FAILURE;
}
std::cout << " PASSED !" << std::endl;
}
{
std::cout << "Test for Transforming a vnl_vector...";
VectorType xa;
xa[0] = 2.5;
xa[1] = 2.5;
xa[2] = 2.5;
ValueType angle = 8.0 * std::atan(1.0) / 3.0; // 120 degrees in radians
VersorType qa;
qa.Set(xa, angle);
VnlVectorType xb;
xb[0] = 3.0;
xb[1] = 7.0;
xb[2] = 9.0;
VnlVectorType xc = qa.Transform(xb);
// This rotation will just permute the axis
if (itk::Math::abs(xc[1] - xb[0]) > epsilon)
{
std::cout << "Error in X ! " << std::endl;
return EXIT_FAILURE;
}
if (itk::Math::abs(xc[2] - xb[1]) > epsilon)
{
std::cout << "Error in Y ! " << std::endl;
return EXIT_FAILURE;
}
if (itk::Math::abs(xc[0] - xb[2]) > epsilon)
{
std::cout << "Error in Z ! " << std::endl;
return EXIT_FAILURE;
}
std::cout << " PASSED !" << std::endl;
}
{
std::cout << "Test for Set components operations ...";
// First, create a known versor
VectorType::ValueType x1Init[3] = { 2.5f, 1.5f, 3.5f };
VectorType x1 = x1Init;
ValueType angle1 = std::atan(1.0) / 3.0; // 15 degrees in radians
VersorType v1;
v1.Set(x1, angle1);
// Get the components and scale them
ValueType scale = 5.5;
ValueType x = v1.GetX() * scale;
ValueType y = v1.GetY() * scale;
ValueType z = v1.GetZ() * scale;
ValueType w = v1.GetW() * scale;
VersorType v2;
v2.Set(x, y, z, w);
// Compare both versors
if (itk::Math::abs(v1.GetX() - v2.GetX()) > epsilon || itk::Math::abs(v1.GetY() - v2.GetY()) > epsilon ||
itk::Math::abs(v1.GetZ() - v2.GetZ()) > epsilon || itk::Math::abs(v1.GetW() - v2.GetW()) > epsilon)
{
std::cout << "Error in Versor Set(x,y,z,w) ! " << std::endl;
std::cout << "v1 = " << v1 << std::endl;
std::cout << "v2 = " << v2 << std::endl;
return EXIT_FAILURE;
}
std::cout << " PASSED !" << std::endl;
std::cout << "Test for Set quaternion ...";
// Get a vnl_quaternion
VnlQuaternionType vnlq = v1.GetVnlQuaternion();
vnlq *= scale;
v2.Set(vnlq);
// Compare both versors
if (itk::Math::abs(v1.GetX() - v2.GetX()) > epsilon || itk::Math::abs(v1.GetY() - v2.GetY()) > epsilon ||
itk::Math::abs(v1.GetZ() - v2.GetZ()) > epsilon || itk::Math::abs(v1.GetW() - v2.GetW()) > epsilon)
{
std::cout << "Error in Versor Set( vnl_quaternion ) ! " << std::endl;
std::cout << "v1 = " << v1 << std::endl;
std::cout << "v2 = " << v2 << std::endl;
return EXIT_FAILURE;
}
std::cout << " PASSED !" << std::endl;
std::cout << "Test for Set(x,y,z,w) with negative W.";
// Check that a negative W results in negating
// all the versor components.
x = -v1.GetX();
y = -v1.GetY();
z = -v1.GetZ();
w = -v1.GetW();
VersorType v3;
v3.Set(x, y, z, w);
// Compare both versors
if (itk::Math::abs(v1.GetX() - v3.GetX()) > epsilon || itk::Math::abs(v1.GetY() - v3.GetY()) > epsilon ||
itk::Math::abs(v1.GetZ() - v3.GetZ()) > epsilon || itk::Math::abs(v1.GetW() - v3.GetW()) > epsilon)
{
std::cout << "Error in Versor Set() with negative W ! " << std::endl;
std::cout << "v1 = " << v1 << std::endl;
std::cout << "v3 = " << v3 << std::endl;
return EXIT_FAILURE;
}
std::cout << " PASSED !" << std::endl;
}
{
std::cout << "Test for Reciprocal and Conjugate Operations...";
VectorType::ValueType x1Init[3] = { 2.5f, 1.5f, 0.5f };
VectorType x1 = x1Init;
ValueType angle1 = std::atan(1.0) / 3.0; // 15 degrees in radians
VectorType::ValueType x2Init[3] = { 1.5f, 0.5f, 0.5f };
VectorType x2 = x2Init;
ValueType angle2 = std::atan(1.0) / 1.0; // 45 degrees in radians
VersorType v1;
v1.Set(x1, angle1);
VersorType v2;
v2.Set(x2, angle2);
VersorType v2r = v2.GetReciprocal();
VersorType unit = v2 * v2r;
if (itk::Math::abs(unit.GetX()) > epsilon || itk::Math::abs(unit.GetY()) > epsilon ||
itk::Math::abs(unit.GetZ()) > epsilon || itk::Math::abs(unit.GetW() - 1.0) > epsilon)
{
std::cout << "Error in Reciprocal ! " << std::endl;
std::cout << "Versor = " << v2 << std::endl;
std::cout << "Reciprocal = " << v2r << std::endl;
std::cout << "Product = " << unit << std::endl;
return EXIT_FAILURE;
}
unit = v2 / v2;
if (itk::Math::abs(unit.GetX()) > epsilon || itk::Math::abs(unit.GetY()) > epsilon ||
itk::Math::abs(unit.GetZ()) > epsilon || itk::Math::abs(unit.GetW() - 1.0) > epsilon)
{
std::cout << "Error in Division ! " << std::endl;
std::cout << "Versor = " << v2 << std::endl;
std::cout << "Self Division = " << unit << std::endl;
return EXIT_FAILURE;
}
unit = v2;
unit /= v2;
if (itk::Math::abs(unit.GetX()) > epsilon || itk::Math::abs(unit.GetY()) > epsilon ||
itk::Math::abs(unit.GetZ()) > epsilon || itk::Math::abs(unit.GetW() - 1.0) > epsilon)
{
std::cout << "Error in Division operator/= ! " << std::endl;
std::cout << "Versor = " << v2 << std::endl;
std::cout << "Self Division = " << unit << std::endl;
return EXIT_FAILURE;
}
x1.Normalize();
x2.Normalize();
VersorType v3 = v1 * v2;
VersorType v4 = v3 * v2r;
if (itk::Math::abs(v1.GetX() - v4.GetX()) > epsilon || itk::Math::abs(v1.GetY() - v4.GetY()) > epsilon ||
itk::Math::abs(v1.GetZ() - v4.GetZ()) > epsilon || itk::Math::abs(v1.GetW() - v4.GetW()) > epsilon)
{
std::cout << "Error in Versor division ! " << std::endl;
std::cout << "v1 = " << v1 << std::endl;
std::cout << "v1' = " << v4 << std::endl;
return EXIT_FAILURE;
}
std::cout << " PASSED !" << std::endl;
}
{ // Test for the Set() matrix method
std::cout << "Test for Set( MatrixType ) method ..." << std::endl;
MatrixType mm;
// Setting the matrix of a 90 degrees rotation around Z
mm[0][0] = 0.0;
mm[0][1] = 1.0;
mm[0][2] = 0.0;
mm[1][0] = -1.0;
mm[1][1] = 0.0;
mm[1][2] = 0.0;
mm[2][0] = 0.0;
mm[2][1] = 0.0;
mm[2][2] = 1.0;
VersorType vv;
vv.Set(mm);
const double halfSqrtOfTwo = std::sqrt(2.0) / 2.0;
if (itk::Math::abs(vv.GetX() - 0.0) > epsilon || itk::Math::abs(vv.GetY() - 0.0) > epsilon ||
itk::Math::abs(vv.GetZ() - (-halfSqrtOfTwo)) > epsilon || itk::Math::abs(vv.GetW() - halfSqrtOfTwo) > epsilon)
{
std::cout << "Error in Versor Set(Matrix) method ! " << std::endl;
std::cout << "vv = " << vv << std::endl;
return EXIT_FAILURE;
}
// matrix no longer represents a rotation
mm[0][0] = 1.0;
try
{
vv.Set(mm);
return EXIT_FAILURE;
} // should always get here, mm isn't a rotation
catch (const itk::ExceptionObject & excp)
{
std::cout << "Caught expected exception: " << excp;
}
std::cout << " PASSED !" << std::endl;
}
{
std::cout << "Test for Set( MatrixType ) method with rotations that are susceptible to errors in conversion "
"to/from the rotation matrix...";
const int RotationMatrixStabilityTestErrors = RotationMatrixToVersorTest();
if (RotationMatrixStabilityTestErrors > 0)
{
std::cout << "Error in stability of converting to/from RotationMatrix with Set(Matrix) method ! " << std::endl;
std::cout << "Errors Found = " << RotationMatrixStabilityTestErrors << std::endl;
return EXIT_FAILURE;
}
std::cout << " PASSED !" << std::endl;
}
return EXIT_SUCCESS;
}
|