File: itkImageAdaptor.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (544 lines) | stat: -rw-r--r-- 18,807 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkImageAdaptor_h
#define itkImageAdaptor_h

#include "itkImage.h"

namespace itk
{

template <typename TPixelType, unsigned int VImageDimension>
class VectorImage;

/**
 * \class ImageAdaptor
 * \brief Give access to partial aspects of voxels from an Image
 *
 * ImageAdaptors are templated over the ImageType and over a functor
 * that will specify what part of the pixel can be accessed
 *
 * The basic aspects of this class are the types it defines.
 *
 * Image adaptors can be used as intermediate classes that allow
 * the sending of an image to a filter, specifying what part of the
 * image pixels the filter will act on.
 *
 * The TAccessor class should implement the Get and Set methods
 * These two will specify how data can be put
 * and get from parts of each pixel. It should define the types
 * ExternalType and InternalType too.
 *
 * \ingroup ImageAdaptors
 *
 * \ingroup ITKImageAdaptors
 *
 * \sphinx
 * \sphinxexample{Core/ImageAdaptors/PresentImageAfterOperation,Present Image After Operation}
 * \endsphinx
 */
template <typename TImage, typename TAccessor>
class ITK_TEMPLATE_EXPORT ImageAdaptor : public ImageBase<TImage::ImageDimension>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(ImageAdaptor);

  /** Dimension of the image.  This constant is used by functions that are
   * templated over image type (as opposed to being templated over pixel
   * type and dimension) when they need compile time access to the dimension
   * of the image. */
  static constexpr unsigned int ImageDimension = TImage::ImageDimension;

  /** Standard class type aliases. */
  using Self = ImageAdaptor;
  using Superclass = ImageBase<Self::ImageDimension>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;
  using ConstWeakPointer = WeakPointer<const Self>;

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(ImageAdaptor);

  /** Typedef of unadapted image */
  using InternalImageType = TImage;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Pixel type alias support Used to declare pixel type in filters
   * or other operations. */
  using PixelType = typename TAccessor::ExternalType;

  /** Pixel type alias support Used to declare pixel type in filters
   * or other operations. */
  using InternalPixelType = typename TAccessor::InternalType;

  using IOPixelType = PixelType;

  /**  Accessor type that convert data between internal and external
   *  representations. */
  using AccessorType = TAccessor;

  /** type alias of the functor that chooses the appropriate accessor
   * Image or VectorImage. */
  using AccessorFunctorType = typename InternalImageType::AccessorFunctorType::template Rebind<Self>::Type;

  /** Index type alias support An index is used to access pixel values. */
  using typename Superclass::IndexType;
  using IndexValueType = typename IndexType::IndexValueType;

  /** Size type alias support A size is used to define region bounds. */
  using typename Superclass::SizeType;
  using SizeValueType = typename SizeType::SizeValueType;

  /** Offset type alias support */
  using typename Superclass::OffsetType;
  using OffsetValueType = typename OffsetType::OffsetValueType;

  /** Region type alias support A region is used to specify a subset of
   *  an image. */
  using typename Superclass::RegionType;

  /** Spacing type alias support  Spacing holds the size of a pixel.  The
   * spacing is the geometric distance between image samples. */
  using typename Superclass::SpacingType;

  /** Origin type alias support  The origin is the geometric coordinates
   * of the index (0,0). */
  using typename Superclass::PointType;

  /** Direction type alias support  The Direction is a matrix of
   * direction cosines that specify the direction between samples.
   * */
  using typename Superclass::DirectionType;


  /**
   * example usage:
   * using OutputImageType = typename ImageAdaptorType::template Rebind< float >::Type;
   *
   * \deprecated Use RebindImageType instead
   */
  template <typename UPixelType, unsigned int UImageDimension = TImage::ImageDimension>
  struct Rebind
  {
    using Type = Image<UPixelType, UImageDimension>;
  };

  template <typename UPixelType, unsigned int VUImageDimension = TImage::ImageDimension>
  using RebindImageType = itk::Image<UPixelType, VUImageDimension>;


  /** Set the region object that defines the size and starting index
   * for the largest possible region this image could represent.  This
   * is used in determining how much memory would be needed to load an
   * entire dataset.  It is also used to determine boundary
   * conditions.
   * \sa ImageRegion, SetBufferedRegion(), SetRequestedRegion() */
  void
  SetLargestPossibleRegion(const RegionType & region) override;

  /** Set the region object that defines the size and starting index
   * of the region of the image currently load in memory.
   * \sa ImageRegion, SetLargestPossibleRegion(), SetRequestedRegion() */
  void
  SetBufferedRegion(const RegionType & region) override;

  /** Set the region object that defines the size and starting index
   * for the region of the image requested.
   * \sa ImageRegion, SetLargestPossibleRegion(), SetBufferedRegion() */
  void
  SetRequestedRegion(const RegionType & region) override;

  /** Set the requested region from this data object to match the requested
   * region of the data object passed in as a parameter.  This method
   * implements the API from DataObject. The data object parameter must be
   * castable to an ImageBase. */
  void
  SetRequestedRegion(const DataObject * data) override;

  /** Get the region object that defines the size and starting index
   * for the region of the image requested (i.e., the region of the
   * image to be operated on by a filter).
   * This method overloads the one in ImageBase in order to delegate
   * to the adapted image.
   * \sa ImageRegion, SetLargestPossibleRegion(), SetBufferedRegion() */
  const RegionType &
  GetRequestedRegion() const override;

  /** Get the region object that defines the size and starting index
   * for the largest possible region this image could represent.  This
   * is used in determining how much memory would be needed to load an
   * entire dataset.  It is also used to determine boundary
   * conditions.
   * This method overloads the one in ImageBase in order to delegate
   * to the adapted image.
   * \sa ImageRegion, GetBufferedRegion(), GetRequestedRegion() */
  const RegionType &
  GetLargestPossibleRegion() const override;

  /** Get the region object that defines the size and starting index
   * of the region of the image currently loaded in memory.
   * This method overloads the one in ImageBase in order to delegate
   * to the adapted image.
   * \sa ImageRegion, SetLargestPossibleRegion(), SetRequestedRegion() */
  const RegionType &
  GetBufferedRegion() const override;

  /** Allocate the image memory. Dimension and Size must be set a priori. */
  void
  Allocate(bool initialize = false) override;

  /** Restore the data object to its initial state. This means releasing
   * memory. */
  void
  Initialize() override;

  /** Set a pixel. */
  void
  SetPixel(const IndexType & index, const PixelType & value)
  {
    m_PixelAccessor.Set(m_Image->GetPixel(index), value);
  }

  /** Get a pixel (read only version)  */
  PixelType
  GetPixel(const IndexType & index) const
  {
    return m_PixelAccessor.Get(m_Image->GetPixel(index));
  }

  /** Access a pixel. This version can only be an rvalue. */
  PixelType operator[](const IndexType & index) const { return m_PixelAccessor.Get(m_Image->GetPixel(index)); }

  /** Get the OffsetTable from the adapted image */
  const OffsetValueType *
  GetOffsetTable() const;

  /** Compute  Index given an Offset */
  IndexType
  ComputeIndex(OffsetValueType offset) const;

  /** PixelContainer type alias support Used to construct a container for
   * the pixel data. */
  using PixelContainer = typename TImage::PixelContainer;
  using PixelContainerPointer = typename TImage::PixelContainerPointer;
  using PixelContainerConstPointer = typename TImage::PixelContainerConstPointer;

  /** Return a pointer to the container. */
  PixelContainerPointer
  GetPixelContainer()
  {
    return m_Image->GetPixelContainer();
  }

  const PixelContainer *
  GetPixelContainer() const
  {
    return m_Image->GetPixelContainer();
  }

  /** Set the container to use. Note that this does not cause the
   * DataObject to be modified. */
  void
  SetPixelContainer(PixelContainer * container);

  /** Graft the data and information from one image to another. This
   * is a convenience method to setup a second image with all the meta
   * information of another image and use the same pixel
   * container. Note that this method is different than just using two
   * SmartPointers to the same image since separate DataObjects are
   * still maintained. This method is similar to
   * ImageSource::GraftOutput(). The implementation in ImageBase
   * simply calls CopyInformation() and copies the region ivars.
   * The implementation here refers to the superclass' implementation
   * and then copies over the pixel container. */
  virtual void
  Graft(const Self * imgData);

  /** Convenient type alias. */
  using InternalPixelPointerType = InternalPixelType *;

  /** Return a pointer to the beginning of the buffer.  This is used by
   * the image iterator class. */
  InternalPixelType *
  GetBufferPointer();

  const InternalPixelType *
  GetBufferPointer() const;

  /** Set the spacing (size of a pixel) of the image. */
  void
  SetSpacing(const SpacingType & spacing) override;

  void
  SetSpacing(const double * spacing /*[ImageDimension]*/) override;

  void
  SetSpacing(const float * spacing /*[ImageDimension]*/) override;

  /** Get the spacing (size of a pixel) of the image. The
   * spacing is the geometric distance between image samples.
   * \sa SetSpacing() */
  const SpacingType &
  GetSpacing() const override;

  /** Get the origin of the image. The origin is the geometric
   * coordinates of the image origin.
   * \sa SetOrigin() */
  const PointType &
  GetOrigin() const override;

  /** Set the origin of the image. */
  void
  SetOrigin(const PointType origin) override;

  void
  SetOrigin(const double * origin /*[ImageDimension]*/) override;

  void
  SetOrigin(const float * origin /*[ImageDimension]*/) override;

  /** Set the direction of the image. */
  void
  SetDirection(const DirectionType & direction) override;

  /** Get the direction cosines of the image. The direction cosines
   * are vectors that point from one pixel to the next.
   * For ImageBase and Image, the default direction is identity. */
  const DirectionType &
  GetDirection() const override;

  /** Set Internal Image */
  virtual void
  SetImage(TImage *);

  /** Delegate Modified to the Internal Image */
  void
  Modified() const override;

  /** Delegate GetMTime to the Internal Image */
  ModifiedTimeType
  GetMTime() const override;

  /** Return the Data Accesor object */
  AccessorType &
  GetPixelAccessor()
  {
    return m_PixelAccessor;
  }

  /** Return the Data Accesor object */
  const AccessorType &
  GetPixelAccessor() const
  {
    return m_PixelAccessor;
  }

  /** Sets the Data Accesor object */
  void
  SetPixelAccessor(const AccessorType & accessor)
  {
    m_PixelAccessor = accessor;
  }

  /** Return the Data Accesor object */
  void
  Update() override;

  void
  CopyInformation(const DataObject * data) override;

  /** Methods to update the pipeline. Called internally by the
   * pipeline mechanism. */
  void
  UpdateOutputInformation() override;

  void
  SetRequestedRegionToLargestPossibleRegion() override;

  void
  PropagateRequestedRegion() override;

  void
  UpdateOutputData() override;

  bool
  VerifyRequestedRegion() override;

  /** Returns the continuous index from a physical point. */
  template <typename TIndexRep, typename TCoordRep>
  [[nodiscard]] ContinuousIndex<TIndexRep, TImage::ImageDimension>
  TransformPhysicalPointToContinuousIndex(const Point<TCoordRep, TImage::ImageDimension> & point) const
  {
    return m_Image->template TransformPhysicalPointToContinuousIndex<TIndexRep>(point);
  }

  /** \brief Get the continuous index from a physical point
   *
   * Returns true if the resulting index is within the image, false otherwise.
   *
   * \note For performance reasons, if you do not need to use the `bool` return value, please call the corresponding
   * overload instead, which has only one parameter (the point), and returns the continuous index.
   *
   * \sa Transform */
  template <typename TCoordRep>
  ITK_NODISCARD("Call the overload which has the point as the only parameter and returns the index")
  bool TransformPhysicalPointToContinuousIndex(const Point<TCoordRep, Self::ImageDimension> &     point,
                                               ContinuousIndex<TCoordRep, Self::ImageDimension> & index) const
  {
    return m_Image->TransformPhysicalPointToContinuousIndex(point, index);
  }

  /** Returns the index (discrete) of a voxel from a physical point. */
  template <typename TCoordRep>
  [[nodiscard]] IndexType
  TransformPhysicalPointToIndex(const Point<TCoordRep, Self::ImageDimension> & point) const
  {
    return m_Image->TransformPhysicalPointToIndex(point);
  }

  /** Get the index (discrete) from a physical point.
   * Floating point index results are truncated to integers.
   * Returns true if the resulting index is within the image, false otherwise
   *
   * \note For performance reasons, if you do not need to use the `bool` return value, please call the corresponding
   * overload instead, which has only one parameter (the point), and returns the index.
   *
   * \sa Transform */
  template <typename TCoordRep>
  ITK_NODISCARD("Call the overload which has the point as the only parameter and returns the index")
  bool TransformPhysicalPointToIndex(const Point<TCoordRep, Self::ImageDimension> & point, IndexType & index) const
  {
    return m_Image->TransformPhysicalPointToIndex(point, index);
  }

  /** Get a physical point (in the space which
   * the origin and spacing information comes from)
   * from a continuous index (in the index space)
   * \sa Transform */
  template <typename TCoordRep>
  void
  TransformContinuousIndexToPhysicalPoint(const ContinuousIndex<TCoordRep, Self::ImageDimension> & index,
                                          Point<TCoordRep, Self::ImageDimension> &                 point) const
  {
    m_Image->TransformContinuousIndexToPhysicalPoint(index, point);
  }

  /** Returns a physical point from a continuous index (in the index space) */
  template <typename TCoordRep, typename TIndexRep>
  [[nodiscard]] Point<TCoordRep, TImage::ImageDimension>
  TransformContinuousIndexToPhysicalPoint(const ContinuousIndex<TIndexRep, Self::ImageDimension> & index) const
  {
    return m_Image->template TransformContinuousIndexToPhysicalPoint<TIndexRep>(index);
  }

  /** Get a physical point (in the space which
   * the origin and spacing information comes from)
   * from a discrete index (in the index space)
   *
   * \sa Transform */
  template <typename TCoordRep>
  void
  TransformIndexToPhysicalPoint(const IndexType & index, Point<TCoordRep, Self::ImageDimension> & point) const
  {
    m_Image->TransformIndexToPhysicalPoint(index, point);
  }

  /** Returns a physical point from a discrete index (in the index space) */
  template <typename TCoordRep>
  [[nodiscard]] Point<TCoordRep, Self::ImageDimension>
  TransformIndexToPhysicalPoint(const IndexType & index) const
  {
    return m_Image->template TransformIndexToPhysicalPoint<TCoordRep>(index);
  }

  template <typename TCoordRep>
  void
  TransformLocalVectorToPhysicalVector(const FixedArray<TCoordRep, Self::ImageDimension> & inputGradient,
                                       FixedArray<TCoordRep, Self::ImageDimension> &       outputGradient) const
  {
    m_Image->TransformLocalVectorToPhysicalVector(inputGradient, outputGradient);
  }

  template <typename TVector>
  [[nodiscard]] TVector
  TransformLocalVectorToPhysicalVector(const TVector & inputGradient) const
  {
    TVector outputGradient;
    TransformLocalVectorToPhysicalVector(inputGradient, outputGradient);
    return outputGradient;
  }

  template <typename TCoordRep>
  void
  TransformPhysicalVectorToLocalVector(const FixedArray<TCoordRep, Self::ImageDimension> & inputGradient,
                                       FixedArray<TCoordRep, Self::ImageDimension> &       outputGradient) const
  {
    m_Image->TransformPhysicalVectorToLocalVector(inputGradient, outputGradient);
  }

  template <typename TVector>
  [[nodiscard]] TVector
  TransformPhysicalVectorToLocalVector(const TVector & inputGradient) const
  {
    TVector outputGradient;
    TransformPhysicalVectorToLocalVector(inputGradient, outputGradient);
    return outputGradient;
  }

protected:
  ImageAdaptor();
  ~ImageAdaptor() override = default;
  void
  PrintSelf(std::ostream & os, Indent indent) const override;
  void
  Graft(const DataObject * data) override;
  using Superclass::Graft;

private:
  // a specialized method to update PixelAccessors for VectorImages,
  // to have the correct vector length of the image.
  template <typename TPixelType>
  void
  UpdateAccessor(typename itk::VectorImage<TPixelType, ImageDimension> * itkNotUsed(dummy))
  {
    this->m_PixelAccessor.SetVectorLength(this->m_Image->GetNumberOfComponentsPerPixel());
  }

  // The other image types don't expect an accessor which needs any updates
  template <typename T>
  void
  UpdateAccessor(T * itkNotUsed(dummy))
  {}

  // Adapted image, most of the calls to ImageAdaptor
  // will be delegated to this image
  typename TImage::Pointer m_Image{};

  // Data accessor object,
  // it converts the presentation of a pixel
  AccessorType m_PixelAccessor{};
};
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkImageAdaptor.hxx"
#endif

#endif