File: itkGaussianDerivativeImageFunction.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (265 lines) | stat: -rw-r--r-- 7,693 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkGaussianDerivativeImageFunction_hxx
#define itkGaussianDerivativeImageFunction_hxx


#include "itkImageNeighborhoodOffsets.h"
#include "itkShapedImageNeighborhoodRange.h"
#include "itkMath.h"

#include <algorithm> // For fill_n.
#include <cassert>

namespace itk
{

template <typename TInputImage, typename TOutput>
GaussianDerivativeImageFunction<TInputImage, TOutput>::GaussianDerivativeImageFunction()
{
  std::fill_n(m_Sigma, Self::ImageDimension, 1.0);
  std::fill_n(m_Extent, Self::ImageDimension, 1.0);
  m_GaussianDerivativeSpatialFunction->SetNormalized(false); // faster
}

template <typename TInputImage, typename TOutput>
void
GaussianDerivativeImageFunction<TInputImage, TOutput>::SetInputImage(const InputImageType * ptr)
{
  Superclass::SetInputImage(ptr);
  this->RecomputeGaussianKernel();
}

template <typename TInputImage, typename TOutput>
void
GaussianDerivativeImageFunction<TInputImage, TOutput>::SetSigma(const double * sigma)
{
  unsigned int i;

  for (i = 0; i < Self::ImageDimension; ++i)
  {
    if (sigma[i] != m_Sigma[i])
    {
      break;
    }
  }
  if (i < Self::ImageDimension)
  {
    for (i = 0; i < Self::ImageDimension; ++i)
    {
      m_Sigma[i] = sigma[i];
    }
    this->RecomputeGaussianKernel();
  }
}

template <typename TInputImage, typename TOutput>
void
GaussianDerivativeImageFunction<TInputImage, TOutput>::SetSigma(const double sigma)
{
  unsigned int i;

  for (i = 0; i < Self::ImageDimension; ++i)
  {
    if (Math::NotExactlyEquals(sigma, m_Sigma[i]))
    {
      break;
    }
  }
  if (i < Self::ImageDimension)
  {
    for (i = 0; i < Self::ImageDimension; ++i)
    {
      m_Sigma[i] = sigma;
    }
    this->RecomputeGaussianKernel();
  }
}

template <typename TInputImage, typename TOutput>
void
GaussianDerivativeImageFunction<TInputImage, TOutput>::SetExtent(const double * extent)
{
  unsigned int i;

  for (i = 0; i < Self::ImageDimension; ++i)
  {
    if (extent[i] != m_Extent[i])
    {
      break;
    }
  }
  if (i < Self::ImageDimension)
  {
    for (i = 0; i < Self::ImageDimension; ++i)
    {
      m_Extent[i] = extent[i];
    }
    this->RecomputeGaussianKernel();
  }
}

template <typename TInputImage, typename TOutput>
void
GaussianDerivativeImageFunction<TInputImage, TOutput>::SetExtent(const double extent)
{
  unsigned int i;

  for (i = 0; i < Self::ImageDimension; ++i)
  {
    if (Math::NotExactlyEquals(extent, m_Extent[i]))
    {
      break;
    }
  }
  if (i < Self::ImageDimension)
  {
    for (i = 0; i < Self::ImageDimension; ++i)
    {
      m_Extent[i] = extent;
    }
    this->RecomputeGaussianKernel();
  }
}

template <typename TInputImage, typename TOutput>
void
GaussianDerivativeImageFunction<TInputImage, TOutput>::RecomputeGaussianKernel()
{
  const TInputImage * const inputImage = this->GetInputImage();

  if (inputImage == nullptr)
  {
    // Do clean-up, to ensure that the operators will
    // not refer to a previous image, and to reduce memory usage.
    m_OperatorArray = OperatorArrayType();
  }
  else
  {
    using SpacingType = typename TInputImage::SpacingType;
    const SpacingType spacing = m_UseImageSpacing ? inputImage->GetSpacing() : MakeFilled<SpacingType>(1);

    for (unsigned int direction = 0; direction < Self::ImageDimension; ++direction)
    {
      // Set the derivative of the Gaussian first
      OperatorNeighborhoodType                                  dogNeighborhood;
      typename GaussianDerivativeSpatialFunctionType::InputType pt;
      typename NeighborhoodType::SizeType                       size;
      size.Fill(0);
      size[direction] = static_cast<SizeValueType>(m_Sigma[direction] * m_Extent[direction]);
      dogNeighborhood.SetRadius(size);
      m_ImageNeighborhoodOffsets[direction] = GenerateRectangularImageNeighborhoodOffsets(size);

      typename GaussianDerivativeSpatialFunctionType::ArrayType s;
      s[0] = m_Sigma[direction];
      m_GaussianDerivativeSpatialFunction->SetSigma(s);

      typename OperatorNeighborhoodType::Iterator it = dogNeighborhood.Begin();

      unsigned int i = 0;

      const typename TInputImage::SpacingValueType directionSpacing = spacing[direction];
      assert(directionSpacing != 0);

      while (it != dogNeighborhood.End())
      {
        pt[0] = dogNeighborhood.GetOffset(i)[direction] * directionSpacing;
        (*it) = m_GaussianDerivativeSpatialFunction->Evaluate(pt);
        ++i;
        ++it;
      }

      m_OperatorArray[direction] = dogNeighborhood;

      // Note: A future version of ITK could possibly also set a Gaussian blurring operator
      // here, which should then be applied at EvaluateAtIndex(index).
    }
  }
}

template <typename TInputImage, typename TOutput>
auto
GaussianDerivativeImageFunction<TInputImage, TOutput>::EvaluateAtIndex(const IndexType & index) const -> OutputType
{
  OutputType gradient;

  const TInputImage * const image = this->GetInputImage();

  for (unsigned int direction = 0; direction < Self::ImageDimension; ++direction)
  {
    // Note: A future version of ITK should do Gaussian blurring here.

    double result = 0.0;

    const OperatorNeighborhoodType & operatorNeighborhood = m_OperatorArray[direction];

    const ShapedImageNeighborhoodRange<const InputImageType> neighborhoodRange(
      *image, index, m_ImageNeighborhoodOffsets[direction]);
    assert(neighborhoodRange.size() == operatorNeighborhood.Size());

    auto neighborhoodRangeIterator = neighborhoodRange.cbegin();

    for (const TOutput & kernelValue : operatorNeighborhood.GetBufferReference())
    {
      result += kernelValue * (*neighborhoodRangeIterator);
      ++neighborhoodRangeIterator;
    }
    gradient[direction] = result;
  }

  return gradient;
}

template <typename TInputImage, typename TOutput>
auto
GaussianDerivativeImageFunction<TInputImage, TOutput>::Evaluate(const PointType & point) const -> OutputType
{
  IndexType index;

  this->ConvertPointToNearestIndex(point, index);
  return this->EvaluateAtIndex(index);
}

template <typename TInputImage, typename TOutput>
auto
GaussianDerivativeImageFunction<TInputImage, TOutput>::EvaluateAtContinuousIndex(
  const ContinuousIndexType & cindex) const -> OutputType
{
  IndexType index;

  this->ConvertContinuousIndexToNearestIndex(cindex, index);
  return this->EvaluateAtIndex(index);
}

template <typename TInputImage, typename TOutput>
void
GaussianDerivativeImageFunction<TInputImage, TOutput>::PrintSelf(std::ostream & os, Indent indent) const
{
  this->Superclass::PrintSelf(os, indent);
  os << indent << "UseImageSpacing: " << (m_UseImageSpacing ? "On" : "Off") << std::endl;

  os << indent << "Sigma: " << m_Sigma << std::endl;
  os << indent << "Extent: " << m_Extent << std::endl;

  os << indent << "OperatorArray: " << m_OperatorArray << std::endl;
  os << indent << "GaussianDerivativeSpatialFunction: " << m_GaussianDerivativeSpatialFunction << std::endl;
}

} // end namespace itk

#endif