File: itkLabelImageGaussianInterpolateImageFunction.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (100 lines) | stat: -rw-r--r-- 3,222 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
/*=========================================================================
 *
 *  Portions of this file are subject to the VTK Toolkit Version 3 copyright.
 *
 *  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
 *
 *  For complete copyright, license and disclaimer of warranty information
 *  please refer to the NOTICE file at the top of the ITK source tree.
 *
 *=========================================================================*/

#ifndef itkLabelImageGaussianInterpolateImageFunction_hxx
#define itkLabelImageGaussianInterpolateImageFunction_hxx


namespace itk
{

template <typename TInputImage, typename TCoordRep, typename TPixelCompare>
auto
LabelImageGaussianInterpolateImageFunction<TInputImage, TCoordRep, TPixelCompare>::EvaluateAtContinuousIndex(
  const ContinuousIndexType & cindex,
  OutputType *                itkNotUsed(grad)) const -> OutputType
{
  vnl_vector<RealType> erfArray[ImageDimension];
  vnl_vector<RealType> gerfArray[ImageDimension];

  typename Superclass::RegionType region = this->ComputeInterpolationRegion(cindex);

  // Compute the ERF difference arrays
  for (unsigned int d = 0; d < ImageDimension; ++d)
  {
    this->ComputeErrorFunctionArray(region, d, cindex[d], erfArray[d], gerfArray[d], false);
  }

  RealType   wmax = 0.0;
  OutputType Vmax{};

  // Create a map object to store weights for each label encountered
  // inside the search region. This is not as efficient as having a
  // linear list of labels, but probably not a huge deal compared to
  // having to evaluate the erf function
  using WeightMapType = std::map<OutputType, RealType, TPixelCompare>;
  WeightMapType weightMap;

  for (ImageRegionConstIteratorWithIndex<InputImageType> It(this->GetInputImage(), region); !It.IsAtEnd(); ++It)
  {
    unsigned int j = It.GetIndex()[0] - region.GetIndex()[0];
    RealType     w = erfArray[0][j];
    for (unsigned int d = 1; d < ImageDimension; ++d)
    {
      j = It.GetIndex()[d] - region.GetIndex()[d];
      w *= erfArray[d][j];
    }

    const OutputType V = It.Get();
    auto             it = weightMap.find(V);
    RealType         wtest = 0.0;

    if (it != weightMap.end())
    {
      it->second += w;
      wtest = it->second;
    }
    else
    {
      weightMap.insert(std::make_pair(V, w));
      wtest = w;
    }

    // Keep track of the max value
    if (wtest > wmax)
    {
      wmax = wtest;
      Vmax = V;
    }
  }
  return Vmax;
}

} // namespace itk

#endif