1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkWindowedSincInterpolateImageFunction_hxx
#define itkWindowedSincInterpolateImageFunction_hxx
#include "itkMath.h"
namespace itk
{
// Constant definitions for functions
namespace Function
{
template <unsigned int VRadius, typename TInput, typename TOutput>
const double CosineWindowFunction<VRadius, TInput, TOutput>::m_Factor = itk::Math::pi / (2 * VRadius);
template <unsigned int VRadius, typename TInput, typename TOutput>
const double HammingWindowFunction<VRadius, TInput, TOutput>::m_Factor = itk::Math::pi / VRadius;
template <unsigned int VRadius, typename TInput, typename TOutput>
const double WelchWindowFunction<VRadius, TInput, TOutput>::m_Factor = 1.0 / (VRadius * VRadius);
template <unsigned int VRadius, typename TInput, typename TOutput>
const double LanczosWindowFunction<VRadius, TInput, TOutput>::m_Factor = itk::Math::pi / VRadius;
template <unsigned int VRadius, typename TInput, typename TOutput>
const double BlackmanWindowFunction<VRadius, TInput, TOutput>::m_Factor1 = itk::Math::pi / VRadius;
template <unsigned int VRadius, typename TInput, typename TOutput>
const double BlackmanWindowFunction<VRadius, TInput, TOutput>::m_Factor2 = 2.0 * itk::Math::pi / VRadius;
} // end namespace Function
template <typename TInputImage,
unsigned int VRadius,
typename TWindowFunction,
typename TBoundaryCondition,
typename TCoordRep>
void
WindowedSincInterpolateImageFunction<TInputImage, VRadius, TWindowFunction, TBoundaryCondition, TCoordRep>::
SetInputImage(const ImageType * image)
{
// Call the parent implementation
Superclass::SetInputImage(image);
if (image == nullptr)
{
return;
}
// Set the radius for the neighborhood
Size<ImageDimension> radius;
radius.Fill(VRadius);
// Initialize the neighborhood
IteratorType it(radius, image, image->GetBufferedRegion());
// Compute the offset tables (we ignore all the zero indices
// in the neighborhood)
unsigned int iOffset = 0;
int empty = VRadius;
for (unsigned int iPos = 0; iPos < it.Size(); ++iPos)
{
// Get the offset (index)
typename IteratorType::OffsetType off = it.GetOffset(iPos);
// Check if the offset has zero weights
bool nonzero = true;
for (unsigned int dim = 0; dim < ImageDimension; ++dim)
{
if (off[dim] == -empty)
{
nonzero = false;
break;
}
}
// Only use offsets with non-zero indices
if (nonzero)
{
// Set the offset index
m_OffsetTable[iOffset] = iPos;
// Set the weight table indices
for (unsigned int dim = 0; dim < ImageDimension; ++dim)
{
m_WeightOffsetTable[iOffset][dim] = off[dim] + VRadius - 1;
}
// Increment the index
++iOffset;
}
}
}
template <typename TInputImage,
unsigned int VRadius,
typename TWindowFunction,
typename TBoundaryCondition,
typename TCoordRep>
void
WindowedSincInterpolateImageFunction<TInputImage, VRadius, TWindowFunction, TBoundaryCondition, TCoordRep>::PrintSelf(
std::ostream & os,
Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "OffsetTable: " << m_OffsetTable << std::endl;
os << indent << "WeightOffsetTable: " << m_WeightOffsetTable << std::endl;
}
template <typename TInputImage,
unsigned int VRadius,
typename TWindowFunction,
typename TBoundaryCondition,
typename TCoordRep>
auto
WindowedSincInterpolateImageFunction<TInputImage, VRadius, TWindowFunction, TBoundaryCondition, TCoordRep>::
EvaluateAtContinuousIndex(const ContinuousIndexType & index) const -> OutputType
{
IndexType baseIndex;
double distance[ImageDimension];
// Compute the integer index based on the continuous one by
// 'flooring' the index
for (unsigned int dim = 0; dim < ImageDimension; ++dim)
{
baseIndex[dim] = Math::Floor<IndexValueType>(index[dim]);
distance[dim] = index[dim] - static_cast<double>(baseIndex[dim]);
}
// Position the neighborhood at the index of interest
Size<ImageDimension> radius;
radius.Fill(VRadius);
IteratorType nit(radius, this->GetInputImage(), this->GetInputImage()->GetBufferedRegion());
nit.SetLocation(baseIndex);
// Compute the sinc function for each dimension
double xWeight[ImageDimension][2 * VRadius];
for (unsigned int dim = 0; dim < ImageDimension; ++dim)
{
// x is the offset, hence the parameter of the kernel
double x = distance[dim] + VRadius;
// If distance is zero, i.e. the index falls precisely on the
// pixel boundary, the weights form a delta function.
if (distance[dim] == 0.0)
{
for (unsigned int i = 0; i < m_WindowSize; ++i)
{
xWeight[dim][i] = static_cast<int>(i) == VRadius - 1 ? 1 : 0;
}
}
else
{
// i is the relative offset in dimension dim.
for (unsigned int i = 0; i < m_WindowSize; ++i)
{
// Increment the offset, taking it through the range
// (dist + rad - 1, ..., dist - rad), i.e. all x
// such that itk::Math::abs(x) <= rad
x -= 1.0;
// Compute the weight for this m
xWeight[dim][i] = m_WindowFunction(x) * Sinc(x);
}
}
}
// Iterate over the neighborhood, taking the correct set
// of weights in each dimension
using PixelType = typename NumericTraits<typename TInputImage::PixelType>::RealType;
PixelType xPixelValue{};
for (unsigned int j = 0; j < m_OffsetTableSize; ++j)
{
// Get the offset for this neighbor
unsigned int off = m_OffsetTable[j];
// Get the intensity value at the pixel
PixelType xVal = nit.GetPixel(off);
// Multiply the intensity by each of the weights. Gotta hope
// that the compiler will unwrap this loop and pipeline this!
for (unsigned int dim = 0; dim < ImageDimension; ++dim)
{
xVal *= xWeight[dim][m_WeightOffsetTable[j][dim]];
}
// Increment the pixel value
xPixelValue += xVal;
}
// Return the interpolated value
return static_cast<OutputType>(xPixelValue);
}
} // namespace itk
#endif
|