File: itkGaussianDerivativeImageFunctionTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (248 lines) | stat: -rw-r--r-- 7,191 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkGaussianDerivativeImageFunction.h"
#include "itkTestingMacros.h"
#include <type_traits> // For std::is_same.

template <typename TPixel>
int
TestGaussianDerivativeImageFunction()
{
  constexpr unsigned int Dimension = 2;
  using PixelType = TPixel;
  using ImageType = itk::Image<PixelType, Dimension>;

  // Create and allocate the image
  auto                           image = ImageType::New();
  typename ImageType::SizeType   size;
  typename ImageType::IndexType  start;
  typename ImageType::RegionType region;

  size[0] = 50;
  size[1] = 50;

  start.Fill(0);
  region.SetIndex(start);
  region.SetSize(size);

  image->SetRegions(region);
  image->AllocateInitialized();

  // Fill the image with a straight line
  for (unsigned int i = 0; i < 50; ++i)
  {
    typename ImageType::IndexType ind;
    ind[0] = i;
    ind[1] = 25;
    image->SetPixel(ind, 1);
    ind[1] = 26;
    image->SetPixel(ind, 1);
  }

  // Test the derivative of Gaussian image function
  using DoGFunctionType = itk::GaussianDerivativeImageFunction<ImageType>;
  auto DoG = DoGFunctionType::New();

  bool useImageSpacing = true;
  ITK_TEST_SET_GET_BOOLEAN(DoG, UseImageSpacing, useImageSpacing);

  DoG->SetInputImage(image);

  std::cout << "Testing Set/GetSigma(): ";

  DoG->SetSigma(2.0);
  const double * sigma = DoG->GetSigma();
  for (unsigned int i = 0; i < Dimension; ++i)
  {
    if (sigma[i] != 2.0)
    {
      std::cerr << "[FAILED]" << std::endl;
      return EXIT_FAILURE;
    }
  }
  std::cout << "[PASSED] " << std::endl;


  std::cout << "Testing Set/GetExtent(): ";

  DoG->SetExtent(4.0);
  const double * ext = DoG->GetExtent();
  for (unsigned int i = 0; i < Dimension; ++i)
  {
    if (ext[i] != 4.0)
    {
      std::cerr << "[FAILED]" << std::endl;
      return EXIT_FAILURE;
    }
  }
  std::cout << "[PASSED] " << std::endl;

  std::cout << "Testing consistency within Index/Point/ContinuousIndex: ";
  itk::Index<Dimension> index;
  index.Fill(25);
  typename DoGFunctionType::OutputType gradientIndex;
  gradientIndex = DoG->EvaluateAtIndex(index);

  typename DoGFunctionType::PointType pt;
  pt[0] = 25.0;
  pt[1] = 25.0;
  typename DoGFunctionType::OutputType gradientPoint;
  gradientPoint = DoG->Evaluate(pt);

  typename DoGFunctionType::ContinuousIndexType continuousIndex;
  continuousIndex.Fill(25);
  typename DoGFunctionType::OutputType gradientContinuousIndex;
  gradientContinuousIndex = DoG->EvaluateAtContinuousIndex(continuousIndex);

  if (gradientIndex != gradientPoint || gradientIndex != gradientContinuousIndex)
  {
    std::cerr << "[FAILED] : " << gradientIndex << " : " << gradientPoint << std::endl;
    return EXIT_FAILURE;
  }

  std::cout << "[PASSED] " << std::endl;
  gradientPoint.Normalize(); // normalize the vector

  std::cout << "Testing Evaluate() : ";

  if ((gradientPoint[0] > 0.1) || (itk::Math::abs(gradientPoint[1] + 1.0) > 10e-4))
  {
    std::cerr << "[FAILED]" << std::endl;
    return EXIT_FAILURE;
  }

  std::cout << "[PASSED] " << std::endl;

  pt[0] = 25.0;
  pt[1] = 26.0;
  gradientPoint = DoG->Evaluate(pt);

  gradientPoint.Normalize(); // normalize the vector;

  std::cout << "Testing Evaluate() : ";

  if ((gradientPoint[0] > 0.1) || (itk::Math::abs(gradientPoint[1] - 1.0) > 10e-4))
  {
    std::cerr << "[FAILED]" << std::endl;
    return EXIT_FAILURE;
  }

  std::cout << "[PASSED] " << std::endl;
  return EXIT_SUCCESS;
}

int
itkGaussianDerivativeImageFunctionTest(int, char *[])
{

  // Exercise basic object methods
  // Done outside the helper function in the test because GCC is limited
  // when calling overloaded base class functions.
  constexpr unsigned int Dimension = 2;
  using PixelType = float;
  using ImageType = itk::Image<PixelType, Dimension>;

  using DoGFunctionType = itk::GaussianDerivativeImageFunction<ImageType>;

#if !defined(ITK_LEGACY_REMOVE)
  static_assert(DoGFunctionType::ImageDimension2 == DoGFunctionType::ImageDimension,
                "Check legacy support for ImageDimension2");
  static_assert(std::is_same_v<DoGFunctionType::GaussianDerivativeFunctionType,
                               DoGFunctionType::GaussianDerivativeSpatialFunctionType>,
                "Check legacy support for GaussianDerivativeFunctionType");
  static_assert(std::is_same_v<DoGFunctionType::GaussianDerivativeFunctionPointer,
                               DoGFunctionType::GaussianDerivativeSpatialFunctionPointer>,
                "Check legacy support for GaussianDerivativeFunctionPointer");
#endif

  auto DoG = DoGFunctionType::New();

  ITK_EXERCISE_BASIC_OBJECT_METHODS(DoG, GaussianDerivativeImageFunction, ImageFunction);


  std::cout << "\nTesting derivative of Gaussian image function for float" << std::endl;
  if (TestGaussianDerivativeImageFunction<float>() == EXIT_FAILURE)
  {
    return EXIT_FAILURE;
  }
  std::cout << "\nTesting derivative of Gaussian image function for unsigned short" << std::endl;
  if (TestGaussianDerivativeImageFunction<unsigned short>() == EXIT_FAILURE)
  {
    return EXIT_FAILURE;
  }

  std::cout << "\nTesting Gaussian Derivative Spatial Function:";

  using GaussianDerivativeFunctionType = itk::GaussianDerivativeSpatialFunction<double, 1>;
  auto f = GaussianDerivativeFunctionType::New();

  f->SetScale(1.0);
  if (f->GetScale() != 1.0)
  {
    std::cerr << "Get Scale : [FAILED]" << std::endl;
    return EXIT_FAILURE;
  }

  f->SetNormalized(true);
  if (!f->GetNormalized())
  {
    std::cerr << "GetNormalized : [FAILED]" << std::endl;
    return EXIT_FAILURE;
  }

  GaussianDerivativeFunctionType::ArrayType s;
  s[0] = 1.0;
  f->SetSigma(s);
  if (f->GetSigma()[0] != 1.0)
  {
    std::cerr << "GetSigma : [FAILED]" << std::endl;
    return EXIT_FAILURE;
  }

  GaussianDerivativeFunctionType::ArrayType m;
  m[0] = 0.0;
  f->SetMean(m);
  if (f->GetMean()[0] != 0.0)
  {
    std::cerr << "GetMean : [FAILED]" << std::endl;
    return EXIT_FAILURE;
  }

  f->SetDirection(0);
  if (f->GetDirection() != 0)
  {
    std::cerr << "GetDirection : [FAILED]" << std::endl;
    return EXIT_FAILURE;
  }

  GaussianDerivativeFunctionType::InputType point;
  point[0] = 0.0;

  if (f->Evaluate(point) != 0.0)
  {
    std::cerr << "Evaluate: [FAILED]" << std::endl;
    return EXIT_FAILURE;
  }

  std::cout << f << std::endl;
  std::cout << "[PASSED] " << std::endl;

  std::cout << "GaussianDerivativeImageFunctionTest: [DONE] " << std::endl;
  return EXIT_SUCCESS;
}