File: itkMahalanobisDistanceThresholdImageFunctionTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (148 lines) | stat: -rw-r--r-- 4,464 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/


#include "itkMahalanobisDistanceThresholdImageFunction.h"
#include "itkImage.h"
#include "itkImageFunction.h"
#include "itkMath.h"
#include "itkTestingMacros.h"

int
itkMahalanobisDistanceThresholdImageFunctionTest(int, char *[])
{

  constexpr unsigned int Dimension = 3;
  using PixelComponentType = unsigned char;
  using PixelType = itk::RGBPixel<PixelComponentType>;

  using ImageType = itk::Image<PixelType, Dimension>;
  using FunctionType = itk::MahalanobisDistanceThresholdImageFunction<ImageType>;

  // Create and allocate the image
  auto                  image = ImageType::New();
  ImageType::SizeType   size;
  ImageType::IndexType  start;
  ImageType::RegionType region;

  size[0] = 50;
  size[1] = 50;
  size[2] = 50;

  start.Fill(0);

  region.SetIndex(start);
  region.SetSize(size);

  image->SetRegions(region);
  image->Allocate();

  ImageType::PixelType initialValue;

  initialValue[0] = 11;
  initialValue[1] = 22;
  initialValue[2] = 33;

  image->FillBuffer(initialValue);

  auto function = FunctionType::New();

  ITK_EXERCISE_BASIC_OBJECT_METHODS(function, MahalanobisDistanceThresholdImageFunction, ImageFunction);

  function->SetInputImage(image);

  constexpr double threshold = 5.0;
  function->SetThreshold(threshold);

  FunctionType::CovarianceMatrixType covariance(Dimension, Dimension);
  FunctionType::MeanVectorType       mean(Dimension);

  mean[0] = 10.0;
  mean[1] = 20.0;
  mean[2] = 30.0;

  covariance.fill(0.0);
  covariance[0][0] = 100.0;
  covariance[1][1] = 200.0;
  covariance[2][2] = 300.0;

  function->SetCovariance(covariance);
  function->SetMean(mean);

  ITK_TEST_SET_GET_VALUE(covariance, function->GetCovariance());
  ITK_TEST_SET_GET_VALUE(mean, function->GetMean());

  ImageType::IndexType index;

  index[0] = 25;
  index[1] = 25;
  index[2] = 25;

  ITK_TEST_EXPECT_TRUE(function->EvaluateAtIndex(index));

  const double distance = function->EvaluateDistanceAtIndex(index);
  std::cout << "function->EvaluateDistanceAtIndex( index ): " << distance << std::endl;

  constexpr double expectedDistance = 0.244949;
  if (!itk::Math::FloatAlmostEqual(distance, expectedDistance, 10, 1e-5))
  {
    std::cerr << "Error in distance computation in EvaluateDistanceAtIndex() !!" << std::endl;
    std::cerr << "Expected distance value = " << expectedDistance << std::endl;
    std::cerr << "Distance obtained value = " << distance << std::endl;
    return EXIT_FAILURE;
  }

  // Test Evaluate
  FunctionType::PointType point;
  point[0] = 25;
  point[1] = 25;
  point[2] = 25;

  ITK_TEST_EXPECT_TRUE(function->Evaluate(point));

  const double distance2 = function->EvaluateDistance(point);
  std::cout << "function->EvaluateDistance(point): " << distance2 << std::endl;

  if (!itk::Math::FloatAlmostEqual(distance2, expectedDistance, 10, 1e-5))
  {
    std::cerr << "Error in distance computation in EvaluateDistance() !!" << std::endl;
    std::cerr << "Expected distance value = " << expectedDistance << std::endl;
    std::cerr << "Distance obtained value = " << distance2 << std::endl;
    return EXIT_FAILURE;
  }

  // Test EvaluateAtContinuousIndex
  FunctionType::ContinuousIndexType cindex;
  cindex[0] = 25;
  cindex[1] = 25;
  cindex[2] = 25;

  ITK_TEST_EXPECT_TRUE(function->EvaluateAtContinuousIndex(cindex));

  // Test GetConstReferenceMacro
  const double & getThreshold = function->GetThreshold();
  std::cout << "function->GetThreshold(): " << getThreshold << std::endl;
  if (!itk::Math::FloatAlmostEqual(threshold, getThreshold, 10, 1e-9))
  {
    std::cerr << "Error: Set/Get Threshold do not match" << std::endl;
    return EXIT_FAILURE;
  }

  std::cout << "Test PASSED ! " << std::endl;
  return EXIT_SUCCESS;
}