File: itkSumOfSquaresImageFunctionGTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (172 lines) | stat: -rw-r--r-- 6,281 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

// First include the header file to be tested:
#include "itkSumOfSquaresImageFunction.h"
#include "itkRectangularImageNeighborhoodShape.h"

#include "itkImage.h"
#include "itkImageBufferRange.h"
#include "itkIndexRange.h"
#include "itkTestingMacros.h"

#include <gtest/gtest.h>
#include <numeric>     // For std::accumulate.
#include <type_traits> // For std::is_reference.

// Test template instantiations for various template arguments:
template class itk::SumOfSquaresImageFunction<itk::Image<short, 1>>;
template class itk::SumOfSquaresImageFunction<itk::Image<short, 2>>;
template class itk::SumOfSquaresImageFunction<itk::Image<short, 3>>;
template class itk::SumOfSquaresImageFunction<itk::Image<short, 3>, double>;

namespace
{
// Creates a test image, filled with a sequence of natural numbers, 1, 2, 3, ..., N.
template <typename TImage>
typename TImage::Pointer
CreateImageFilledWithSequenceOfNaturalNumbers(const typename TImage::SizeType & imageSize)
{
  using PixelType = typename TImage::PixelType;
  const auto image = TImage::New();
  image->SetRegions(imageSize);
  image->Allocate();
  const auto imageBufferRange = itk::ImageBufferRange{ *image };
  std::iota(imageBufferRange.begin(), imageBufferRange.end(), PixelType{ 1 });
  return image;
}


template <typename TImage>
void
Expect_EvaluateAtIndex_returns_zero_when_all_pixels_are_zero(const typename TImage::SizeType & imageSize)
{
  const auto image = TImage::New();
  image->SetRegions(imageSize);
  image->AllocateInitialized();

  const auto imageFunction = itk::SumOfSquaresImageFunction<TImage>::New();

  imageFunction->SetInputImage(image);

  for (const auto index : itk::ZeroBasedIndexRange<TImage::ImageDimension>{ imageSize })
  {
    EXPECT_EQ(imageFunction->EvaluateAtIndex(index), 0);
  }
}


template <typename TImage>
void
Expect_EvaluateAtIndex_returns_number_of_neigbors_when_all_pixels_are_one(const typename TImage::SizeType & imageSize,
                                                                          const unsigned int                radius)
{
  const auto image = TImage::New();
  image->SetRegions(imageSize);
  image->Allocate();
  image->FillBuffer(1);

  const auto imageFunction = itk::SumOfSquaresImageFunction<TImage>::New();

  imageFunction->SetInputImage(image);
  imageFunction->SetNeighborhoodRadius(radius);

  const auto numberOfNeighbors = std::pow(2.0 * radius + 1.0, TImage::ImageDimension);

  for (const auto index : itk::ZeroBasedIndexRange<TImage::ImageDimension>{ imageSize })
  {
    EXPECT_EQ(imageFunction->EvaluateAtIndex(index), numberOfNeighbors);
  }
}

template <typename TImage>
int
TestBasicObjectProperties()
{
  const auto imageFunction = itk::SumOfSquaresImageFunction<TImage>::New();

  ITK_EXERCISE_BASIC_OBJECT_METHODS(imageFunction, SumOfSquaresImageFunction, ImageFunction);

  unsigned int radius = 1;
  imageFunction->SetNeighborhoodRadius(radius);
  EXPECT_EQ(radius, imageFunction->GetNeighborhoodRadius());

  auto                                                                 size = TImage::SizeType::Filled(radius);
  const itk::RectangularImageNeighborhoodShape<TImage::ImageDimension> shape(size);
  unsigned int                                                         neighborhoodSize = shape.GetNumberOfOffsets();
  EXPECT_EQ(neighborhoodSize, imageFunction->GetNeighborhoodSize());

  return EXIT_SUCCESS;
}
} // namespace


TEST(SumOfSquaresImageFunction, BasicObjectProperties)
{
  int testStatus = TestBasicObjectProperties<itk::Image<double, 2>>();
  EXPECT_EQ(testStatus, EXIT_SUCCESS);

  testStatus = TestBasicObjectProperties<itk::Image<unsigned char, 3>>();
  EXPECT_EQ(testStatus, EXIT_SUCCESS);
}


// Tests that EvaluateAtIndex returns zero when all pixels are zero.
TEST(SumOfSquaresImageFunction, EvaluateAtIndexReturnsZeroWhenAllPixelsAreZero)
{
  Expect_EvaluateAtIndex_returns_zero_when_all_pixels_are_zero<itk::Image<double, 2>>(itk::Size<2>{ { 2, 3 } });
  Expect_EvaluateAtIndex_returns_zero_when_all_pixels_are_zero<itk::Image<unsigned char, 3>>(
    itk::Size<3>{ { 2, 3, 4 } });
}


// Tests that EvaluateAtIndex returns the number of neighborhood pixels when all pixels are one.
TEST(SumOfSquaresImageFunction, EvaluateAtIndexReturnsNumberOfNeighborsWhenAllPixelsAreOne)
{
  for (unsigned int radius{}; radius <= 2; ++radius)
  {
    Expect_EvaluateAtIndex_returns_number_of_neigbors_when_all_pixels_are_one<itk::Image<double, 2>>(
      itk::Size<2>{ { 2, 3 } }, radius);
    Expect_EvaluateAtIndex_returns_number_of_neigbors_when_all_pixels_are_one<itk::Image<unsigned char, 3>>(
      itk::Size<3>{ { 2, 3, 4 } }, radius);
  }
}


// Tests EvaluateAtIndex at the center pixel index (1, 1) of a 3x3 image.
TEST(SumOfSquaresImageFunction, EvaluateAtCenterPixelOfImageOfSize3x3)
{
  using ImageType = itk::Image<int>;

  const auto image = CreateImageFilledWithSequenceOfNaturalNumbers<ImageType>({ { 3, 3 } });
  const auto imageFunction = itk::SumOfSquaresImageFunction<ImageType>::New();

  imageFunction->SetInputImage(image);

  const auto imageBufferRange = itk::ImageBufferRange{ *image };

  // Sum of squares of all pixels of the image:
  const auto expectedResult = std::accumulate(
    imageBufferRange.cbegin(), imageBufferRange.cend(), 0.0, [](const double sum, const int pixelValue) {
      return sum + (pixelValue * pixelValue);
    });

  // Note that in this particular case, the image and the neighborhood have the same size!

  EXPECT_EQ(imageFunction->EvaluateAtIndex(itk::Index<>{ { 1, 1 } }), expectedResult);
}