1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
/*=========================================================================
*
* Portions of this file are subject to the VTK Toolkit Version 3 copyright.
*
* Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
*
* For complete copyright, license and disclaimer of warranty information
* please refer to the NOTICE file at the top of the ITK source tree.
*
*=========================================================================*/
#ifndef itkTriangleMeshCurvatureCalculator_hxx
#define itkTriangleMeshCurvatureCalculator_hxx
#include "itkMakeUniqueForOverwrite.h"
#include "itkObjectFactory.h"
#include "itkMath.h"
#include "vnl/vnl_cross.h"
#include "vnl/vnl_math.h"
namespace itk
{
template <typename TInputMesh>
void
TriangleMeshCurvatureCalculator<TInputMesh>::PrintSelf(std::ostream & os, Indent indent) const
{
this->Superclass::PrintSelf(os, indent);
os << indent << "CurvatureType: " << m_CurvatureType << std::endl;
itkPrintSelfObjectMacro(TriangleMesh);
itkPrintSelfObjectMacro(GaussCurvatureData);
}
template <typename TInputMesh>
void
TriangleMeshCurvatureCalculator<TInputMesh>::Compute()
{
const InputMeshType * inputMesh = this->m_TriangleMesh;
if (inputMesh == nullptr)
{
itkExceptionMacro("First set the Input Triangle Mesh to perform computation");
}
if (this->GetCurvatureType() == TriangleMeshCurvatureCalculatorEnums::Curvatures::GaussCurvature)
{
if (inputMesh->GetNumberOfCells())
{
this->ComputeGaussCurvature(inputMesh);
}
}
else
{
itkExceptionMacro("Only Gauss Curvature type available");
}
}
template <typename TInputMesh>
void
TriangleMeshCurvatureCalculator<TInputMesh>::ComputeGaussCurvature(const InputMeshType * inputMesh)
{
MeshPointType e0, e1, e2;
double A, alpha0, alpha1, alpha2;
const unsigned int numberOfPoints = inputMesh->GetNumberOfPoints();
const auto K = make_unique_for_overwrite<double[]>(numberOfPoints);
const auto dA = std::make_unique<double[]>(numberOfPoints);
double pi2 = itk::Math::twopi;
for (unsigned int k = 0; k < numberOfPoints; ++k)
{
K[k] = pi2;
}
CellsContainerConstPointer outCells = inputMesh->GetCells();
CellsContainerConstIterator cellsItr = outCells->Begin();
while (cellsItr != outCells->End())
{
CellType * cellPointer = cellsItr.Value();
auto * triangleCellPointer = dynamic_cast<TriangleCellType *>(cellPointer);
if (triangleCellPointer == nullptr)
{
itkExceptionMacro("Input Mesh is not a Triangle Mesh");
}
MeshPointIdConstIterator point_ids = triangleCellPointer->GetPointIds();
MeshPointType v0 = inputMesh->GetPoint(point_ids[0]);
MeshPointType v1 = inputMesh->GetPoint(point_ids[1]);
MeshPointType v2 = inputMesh->GetPoint(point_ids[2]);
// Edges
e0[0] = v1[0];
e0[1] = v1[1];
e0[2] = v1[2];
e0[0] -= v0[0];
e0[1] -= v0[1];
e0[2] -= v0[2];
e1[0] = v2[0];
e1[1] = v2[1];
e1[2] = v2[2];
e1[0] -= v1[0];
e1[1] -= v1[1];
e1[2] -= v1[2];
e2[0] = v0[0];
e2[1] = v0[1];
e2[2] = v0[2];
e2[0] -= v2[0];
e2[1] -= v2[1];
e2[2] -= v2[2];
alpha0 = itk::Math::pi - angle(e1.GetVnlVector(), e2.GetVnlVector());
alpha1 = itk::Math::pi - angle(e2.GetVnlVector(), e0.GetVnlVector());
alpha2 = itk::Math::pi - angle(e0.GetVnlVector(), e1.GetVnlVector());
// Surface area
A = static_cast<double>(
itk::Math::abs(vnl_cross_3d((v1 - v0).GetVnlVector(), (v2 - v0).GetVnlVector()).two_norm() / 2.0));
dA[point_ids[0]] += A;
dA[point_ids[1]] += A;
dA[point_ids[2]] += A;
K[point_ids[0]] -= alpha1;
K[point_ids[1]] -= alpha2;
K[point_ids[2]] -= alpha0;
++cellsItr;
}
// Allocate Memory to store the curvature output.
this->m_GaussCurvatureData = DoubleVectorContainer::New();
this->m_GaussCurvatureData->Reserve(numberOfPoints);
// Put curvature in gaussCurvatureData.
for (unsigned int v = 0; v < numberOfPoints; ++v)
{
if (dA[v] > 0.0)
{
this->m_GaussCurvatureData->SetElement(v, 3.0 * K[v] / dA[v]);
}
}
}
} // end namespace itk
#endif
|