1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include <iostream>
#include "itkRegularSphereMeshSource.h"
#include "itkTriangleMeshCurvatureCalculator.h"
#include "itkTestingMacros.h"
#include "itkMeshFileReader.h"
/* Test the Curvature calculator for sphere source and a vtk mesh file */
int
itkTriangleMeshCurvatureCalculatorTest(int argc, char * argv[])
{
const unsigned int Dimension = 3;
using PixelType = double;
// Declare the type of the input mesh.
using TriangleMeshType = itk::Mesh<PixelType, Dimension>;
// Create Curvature calculator and set the type.
using CurvatureCalculatorType = itk::TriangleMeshCurvatureCalculator<TriangleMeshType>;
auto curvCalculator = CurvatureCalculatorType::New();
// Exercise basic object methods
ITK_EXERCISE_BASIC_OBJECT_METHODS(curvCalculator, TriangleMeshCurvatureCalculator, Object);
// Test for empty mesh, curvature data should be null.
TriangleMeshType::Pointer triangleMesh = TriangleMeshType::New();
// Test if calling Compute() before setting mesh throws error.
ITK_TRY_EXPECT_EXCEPTION(curvCalculator->Compute());
curvCalculator->SetTriangleMesh(triangleMesh);
// Test the curvature type setter and getter.
curvCalculator->SetCurvatureType(itk::TriangleMeshCurvatureCalculatorEnums::Curvatures::MeanCurvature);
ITK_TEST_SET_GET_VALUE(itk::TriangleMeshCurvatureCalculatorEnums::Curvatures::MeanCurvature,
curvCalculator->GetCurvatureType());
// Now test if it throws exception for not-supported curvature type.
ITK_TRY_EXPECT_EXCEPTION(curvCalculator->Compute());
curvCalculator->SetCurvatureTypeToGaussian();
// Test if Gauss curvature is set.
ITK_TEST_SET_GET_VALUE(itk::TriangleMeshCurvatureCalculatorEnums::Curvatures::GaussCurvature,
curvCalculator->GetCurvatureType());
curvCalculator->Compute();
// Output should be null for empty mesh.
auto gaussCurvatureData = curvCalculator->GetGaussCurvatureData();
ITK_TEST_EXPECT_TRUE(gaussCurvatureData == nullptr);
// Test for Sphere mesh Source
// Declare Triangle mesh source
using SphereMeshSourceType = itk::RegularSphereMeshSource<TriangleMeshType>;
using PointType = SphereMeshSourceType::PointType;
using VectorType = SphereMeshSourceType::VectorType;
auto mySphereMeshSource = SphereMeshSourceType::New();
PointType center;
center.Fill(0);
PointType::ValueType scaleInit_1[Dimension] = { 5, 5, 5 };
VectorType scale = scaleInit_1;
mySphereMeshSource->SetCenter(center);
mySphereMeshSource->SetResolution(1);
mySphereMeshSource->SetScale(scale);
mySphereMeshSource->Update();
triangleMesh = mySphereMeshSource->GetOutput();
curvCalculator->SetTriangleMesh(triangleMesh);
curvCalculator->SetCurvatureTypeToGaussian();
curvCalculator->Compute();
gaussCurvatureData = curvCalculator->GetGaussCurvatureData();
// Values obtained using the VTK Gaussian Curvature
float v1 = 0.06087285;
float v2 = 0.04463759;
// Test if values are correct for scale 5 and resolution 1 sphere
for (unsigned int k = 0; k < triangleMesh->GetNumberOfPoints(); ++k)
{
if (k < 6)
{
ITK_TEST_EXPECT_TRUE(itk::Math::AlmostEquals(gaussCurvatureData->GetElement(k), v1));
}
else
{
ITK_TEST_EXPECT_TRUE(itk::Math::AlmostEquals(gaussCurvatureData->GetElement(k), v2));
}
}
// Test the method for different scale. The curvature should decrease for larger sphere.
PointType::ValueType scaleInit_2[Dimension] = { 100, 100, 100 };
scale = scaleInit_2;
mySphereMeshSource->SetCenter(center);
mySphereMeshSource->SetResolution(1);
mySphereMeshSource->SetScale(scale);
mySphereMeshSource->Update();
triangleMesh = mySphereMeshSource->GetOutput();
curvCalculator->SetTriangleMesh(triangleMesh);
curvCalculator->SetCurvatureTypeToGaussian();
curvCalculator->Compute();
gaussCurvatureData = curvCalculator->GetGaussCurvatureData();
float v3 = 0.00015218;
float v4 = 0.00011159;
// Test if values are correct for scale 100 and resolution 1 sphere.
for (unsigned int k = 0; k < triangleMesh->GetNumberOfPoints(); ++k)
{
if (k < 6)
{
ITK_TEST_EXPECT_TRUE(itk::Math::AlmostEquals(gaussCurvatureData->GetElement(k), v3));
}
else
{
ITK_TEST_EXPECT_TRUE(itk::Math::AlmostEquals(gaussCurvatureData->GetElement(k), v4));
}
}
// Test for non-triangle Mesh. It should throw Exception
using CellType = TriangleMeshType::CellType;
using TetrahedronType = itk::TetrahedronCell<CellType>;
CellType::CellAutoPointer cellpointer;
// Insert a Tetrahedron Cell in the mesh
// First obtain the cell on that index to be deleted to avoid memory leak
CellType::CellAutoPointer cellToDelete;
triangleMesh->GetCell(0, cellToDelete);
cellToDelete.TakeOwnership();
// Next insert a Tetrahedron Cell on that index
cellpointer.TakeOwnership(new TetrahedronType);
cellpointer->SetPointId(0, 0);
cellpointer->SetPointId(1, 1);
cellpointer->SetPointId(2, 2);
cellpointer->SetPointId(3, 3);
triangleMesh->SetCell(0, cellpointer);
curvCalculator->SetTriangleMesh(triangleMesh);
curvCalculator->SetCurvatureTypeToGaussian();
ITK_TRY_EXPECT_EXCEPTION(curvCalculator->Compute());
// Test streaming enumeration for TriangleMeshCurvatureCalculatorEnums elements
const std::set<itk::TriangleMeshCurvatureCalculatorEnums::Curvatures> allCurvatures{
itk::TriangleMeshCurvatureCalculatorEnums::Curvatures::GaussCurvature,
itk::TriangleMeshCurvatureCalculatorEnums::Curvatures::MeanCurvature,
itk::TriangleMeshCurvatureCalculatorEnums::Curvatures::MinCurvature,
itk::TriangleMeshCurvatureCalculatorEnums::Curvatures::MaxCurvature
};
for (const auto & ee : allCurvatures)
{
std::cout << "STREAMED ENUM VALUE itk::TriangleMeshCurvatureCalculatorEnums::Curvatures: " << ee << std::endl;
}
// Test for a vtk mesh obtained using MeshFileReader.
if (argc > 1)
{
using ReaderType = itk::MeshFileReader<TriangleMeshType>;
ReaderType::Pointer polyDataReader = ReaderType::New();
polyDataReader->SetFileName(argv[1]);
polyDataReader->Update();
TriangleMeshType::Pointer inputMesh = polyDataReader->GetOutput();
curvCalculator->SetTriangleMesh(inputMesh);
curvCalculator->SetCurvatureTypeToGaussian();
curvCalculator->Compute();
gaussCurvatureData = curvCalculator->GetGaussCurvatureData();
ITK_TEST_EXPECT_TRUE(gaussCurvatureData->Size() == inputMesh->GetNumberOfPoints());
}
return EXIT_SUCCESS;
}
|