1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkQuadEdgeMeshPoint.h"
#include "itkMesh.h"
int
itkQuadEdgeMeshPointTest1(int, char *[])
{
std::cout << "Testing points..." << std::endl;
//
// These type alias are taken from a traditional itk mesh just
// to get definitions that are consistent with the derived class.
//
using NonQuadEdgeMeshType = itk::Mesh<float, 3>;
using PointIdentifier = NonQuadEdgeMeshType::PointIdentifier;
using FaceIdentifier = NonQuadEdgeMeshType::CellIdentifier;
using PrimalDataType = bool;
using DualDataType = bool;
const bool ThisIsDual = true;
using QuadEdgeType =
itk::GeometricalQuadEdge<PointIdentifier, FaceIdentifier, PrimalDataType, DualDataType, ThisIsDual>;
using PointType = itk::QuadEdgeMeshPoint<float, 3, QuadEdgeType>;
using SuperclassPointType = PointType::Superclass;
PointType p0; // Test default constructor
PointType p1;
p1[0] = 17.7;
p1[1] = 39.7;
p1[2] = -49.7;
PointType p2(p1); // Test copy constructor
if (p1.EuclideanDistanceTo(p2) > 1e-6)
{
std::cerr << "Error in the copy constructor" << std::endl;
return EXIT_FAILURE;
}
//
// Test assignment from an itk::Point
//
SuperclassPointType ps;
ps[0] = 29;
ps[1] = 31;
ps[2] = 37;
PointType pp = ps;
if (pp.EuclideanDistanceTo(ps) > 1e-6)
{
std::cerr << "Error in the array constructor" << std::endl;
return EXIT_FAILURE;
}
PointType pp2;
pp2.SetPoint(ps);
if (pp2.EuclideanDistanceTo(ps) > 1e-6)
{
std::cerr << "Error in the array constructor" << std::endl;
return EXIT_FAILURE;
}
PointType::ValueArrayType cc;
cc[0] = 17.7;
cc[1] = 39.7;
cc[2] = -49.7;
PointType p3(cc); // Test Array based constructor
if (p2.EuclideanDistanceTo(p1) > 1e-6)
{
std::cerr << "Error in the array constructor" << std::endl;
return EXIT_FAILURE;
}
PointType p4;
PointType p4b;
p4b = p4 = p1; // Test assignment operator to Self
if (p4.EuclideanDistanceTo(p1) > 1e-6)
{
std::cerr << "Error in the assignment operator to Self" << std::endl;
return EXIT_FAILURE;
}
if (p4b.EuclideanDistanceTo(p4) > 1e-6)
{
std::cerr << "Error in the assignment operator to Self" << std::endl;
return EXIT_FAILURE;
}
PointType::Superclass pp1;
pp1[0] = 17.7;
pp1[1] = 39.7;
pp1[2] = -49.7;
PointType p5;
PointType p5b;
p5b = p5 = pp1; // Test assignment operator from Superclass
if (p5.EuclideanDistanceTo(pp1) > 1e-6)
{
std::cerr << "Error assignment operator from Superclass" << std::endl;
return EXIT_FAILURE;
}
if (p5b.EuclideanDistanceTo(p5) > 1e-6)
{
std::cerr << "Error assignment operator from Superclass" << std::endl;
return EXIT_FAILURE;
}
PointType p6;
PointType p6b;
p6b = p6 = cc; // Test assignment operator from array
if (p6.EuclideanDistanceTo(p3) > 1e-6)
{
std::cerr << "Error in the assignment operator from Array " << std::endl;
return EXIT_FAILURE;
}
if (p6b.EuclideanDistanceTo(p6) > 1e-6)
{
std::cerr << "Error in the assignment operator from Array " << std::endl;
return EXIT_FAILURE;
}
auto * edge1 = new QuadEdgeType;
p6.SetEdge(edge1);
if (p6.GetEdge() != edge1)
{
std::cerr << "Error in SetEdge()/GetEdge() " << std::endl;
delete edge1;
return EXIT_FAILURE;
}
auto * edge2 = new QuadEdgeType;
p6.SetEdge(edge2);
if (p6.GetEdge() != edge2)
{
std::cerr << "Error in SetEdge()/GetEdge() " << std::endl;
delete edge1;
delete edge2;
return EXIT_FAILURE;
}
// The following tests are commented out
// because the point code is not safe yet.
#if defined(POINTMAKESAFE)
bool internal = p6.IsInternal();
if (internal != true) // FIXME: verify with a realistic case
{
std::cerr << "Error in IsInternal() " << std::endl;
delete edge1;
delete edge2;
return EXIT_FAILURE;
}
PointType p7;
if (p7.IsInternal())
{
std::cerr << "Error in IsInternal() " << std::endl;
return EXIT_FAILURE;
}
int valence = p6.GetValence();
if (valence != 1)
{
std::cerr << "Error in GetValence() " << std::endl;
std::cerr << "valence = " << valence << std::endl;
return EXIT_FAILURE;
}
#endif
delete edge1;
delete edge2;
std::cout << "Test passed" << std::endl;
return EXIT_SUCCESS;
}
|