1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkGaussianSpatialObject_h
#define itkGaussianSpatialObject_h
#include "itkEllipseSpatialObject.h"
namespace itk
{
/**
* \class GaussianSpatialObject
*
* \brief Represents a multivariate Gaussian function.
*
* The Gaussian function G(x) is given by
* \f[
* G(\vec{x}) = m e^{-\|\S^{-1} \vec{x}\|^2 / 2},
* \f]
* where m is a scaling factor set by SetMaximum(), and \f$\S\f$ is the
* (invertible) matrix associated to the IndexToObjectTransform of the object
* multiplied by the Sigma parameter. If \f$\S\f$ is symmetric and positive
* definite, and m is chosen so that the integral of G(x) is 1, then G will
* denote a normal distribution with mean 0 and covariance matrix \f$\S \times
* Sigma\f$.
* \ingroup ITKSpatialObjects
*/
template <unsigned int TDimension = 3>
class ITK_TEMPLATE_EXPORT GaussianSpatialObject : public SpatialObject<TDimension>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(GaussianSpatialObject);
using Self = GaussianSpatialObject;
using ScalarType = double;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
using Superclass = SpatialObject<TDimension>;
using SuperclassPointer = SmartPointer<Superclass>;
using typename Superclass::PointType;
using typename Superclass::TransformType;
using typename Superclass::BoundingBoxType;
static constexpr unsigned int ObjectDimensions = TDimension;
itkNewMacro(Self);
itkOverrideGetNameOfClassMacro(GaussianSpatialObject);
/** Reset the spatial object to its initial condition, yet preserves
* Id, Parent, and Child information */
void
Clear() override;
/** The Radius determines the bounding box, and which points are
* considered to be inside the SpatialObject. All points with
* z-score less than the radius are in the object. */
itkSetMacro(RadiusInObjectSpace, ScalarType);
itkGetConstReferenceMacro(RadiusInObjectSpace, ScalarType);
/** The Sigma parameter determines the fallout of the Gaussian inside of the
* region defined by the Radius parameter. */
itkSetMacro(SigmaInObjectSpace, ScalarType);
itkGetConstReferenceMacro(SigmaInObjectSpace, ScalarType);
itkSetMacro(CenterInObjectSpace, PointType);
itkGetConstReferenceMacro(CenterInObjectSpace, PointType);
/** The maximum value of the Gaussian (its value at the origin of
* the spatial object coordinate system). */
itkSetMacro(Maximum, ScalarType);
itkGetConstReferenceMacro(Maximum, ScalarType);
/** Compute the z-score in object space.
*
* The z-score is the root mean square of the z-scores along each principal axis.
*/
ScalarType
SquaredZScoreInObjectSpace(const PointType & point) const;
/** Compute the z-score in world space.
*
* The z-score is the root mean square of the z-scores along each principal axis.
*/
ScalarType
SquaredZScoreInWorldSpace(const PointType & point) const;
/** Test whether a point is inside the object.
*
* For computational speed purposes, it is faster if the method does not check the name of the class and the
* current depth.
*/
bool
IsInsideInObjectSpace(const PointType & point) const override;
/* Avoid hiding the overload that supports depth and name arguments */
using Superclass::IsInsideInObjectSpace;
/** Returns the value of the Gaussian at the given point. */
bool
ValueAtInObjectSpace(const PointType & point,
double & value,
unsigned int depth = 0,
const std::string & name = "") const override;
/** Returns the $sigma = $ \c m_Radius level set of the Gaussian function, as an
* EllipseSpatialObject. */
typename EllipseSpatialObject<TDimension>::Pointer
GetEllipsoid() const;
#if !defined(ITK_LEGACY_REMOVE)
itkLegacyMacro(void SetSigma(double sigma)) { return this->SetSigmaInObjectSpace(sigma); }
itkLegacyMacro(double GetSigma() const) { return this->GetSigmaInObjectSpace(); }
#endif
protected:
/** This function needs to be called every time one of the object's
* components is changed. */
void
ComputeMyBoundingBox() override;
GaussianSpatialObject();
~GaussianSpatialObject() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
typename LightObject::Pointer
InternalClone() const override;
private:
ScalarType m_Maximum{};
ScalarType m_RadiusInObjectSpace{};
ScalarType m_SigmaInObjectSpace{};
PointType m_CenterInObjectSpace{};
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkGaussianSpatialObject.hxx"
#endif
#endif // itkGaussianSpatialObject_h
|