File: itkSpatialObjectToImageStatisticsCalculator.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (247 lines) | stat: -rw-r--r-- 8,618 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkSpatialObjectToImageStatisticsCalculator_hxx
#define itkSpatialObjectToImageStatisticsCalculator_hxx

#include "itkImageRegionConstIteratorWithIndex.h"

#include "itkMeanSampleFilter.h"
#include "itkCovarianceSampleFilter.h"
#include "itkImageMaskSpatialObject.h"
#include <algorithm> // For max.

namespace itk
{

template <typename TInputImage, typename TInputSpatialObject, unsigned int TSampleDimension>
SpatialObjectToImageStatisticsCalculator<TInputImage, TInputSpatialObject, TSampleDimension>::
  SpatialObjectToImageStatisticsCalculator()
{
  m_Image = nullptr;
  m_SpatialObject = nullptr;
  m_Mean.Fill(0);
  m_CovarianceMatrix.SetIdentity();
  m_SampleDirection = TSampleDimension - 1;
  m_InternalImageTime = 0;
  m_InternalSpatialObjectTime = 0;
  m_Sum = 0;
  m_NumberOfPixels = 0;
  m_Sample = SampleType::New();
}

template <typename TInputImage, typename TInputSpatialObject, unsigned int TSampleDimension>
bool
SpatialObjectToImageStatisticsCalculator<TInputImage, TInputSpatialObject, TSampleDimension>::ComputeStatistics()
{
  using MeanAlgorithmType = itk::Statistics::MeanSampleFilter<SampleType>;
  auto meanAlgorithm = MeanAlgorithmType::New();
  meanAlgorithm->SetInput(m_Sample);
  meanAlgorithm->Update();

  typename MeanAlgorithmType::MeasurementVectorType mean = meanAlgorithm->GetMean();

  for (unsigned int i = 0; i < SampleDimension; ++i)
  {
    m_Mean[i] = mean[i];
  }

  using CovarianceAlgorithmType = itk::Statistics::CovarianceSampleFilter<SampleType>;
  auto covarianceAlgorithm = CovarianceAlgorithmType::New();

  covarianceAlgorithm->SetInput(m_Sample);
  covarianceAlgorithm->Update();

  typename CovarianceAlgorithmType::MatrixType covarianceMatrix = covarianceAlgorithm->GetCovarianceMatrix();
  for (unsigned int i = 0; i < covarianceMatrix.Rows(); ++i)
  {
    for (unsigned int j = 0; j < covarianceMatrix.Rows(); ++j)
    {
      m_CovarianceMatrix(i, j) = covarianceMatrix(i, j);
    }
  }

  return true;
}

template <typename TInputImage, typename TInputSpatialObject, unsigned int TSampleDimension>
void
SpatialObjectToImageStatisticsCalculator<TInputImage, TInputSpatialObject, TSampleDimension>::Update()
{
  if (!m_Image || !m_SpatialObject)
  {
    itkExceptionMacro("SpatialObjectToImageStatisticsCalculator: set image AND spatialObject.");
  }

  // Update only if the image or the spatial object has been modified
  if ((m_Image->GetMTime() == m_InternalImageTime) && (m_SpatialObject->GetMTime() == m_InternalSpatialObjectTime))
  {
    return; // No need to update
  }

  m_InternalImageTime = m_Image->GetMTime();
  m_InternalSpatialObjectTime = m_SpatialObject->GetMTime();

  m_Sample = SampleType::New();
  m_Sample->SetMeasurementVectorSize(SampleDimension);

  m_NumberOfPixels = 0;
  m_Sum = 0;

  // If this is an ImageMaskSpatialObject we cannot use the flood filled
  // iterator
  if (!strcmp(m_SpatialObject->GetTypeName().c_str(), "ImageMaskSpatialObject"))
  {
    using MaskImageType = Image<unsigned char, Self::ObjectDimension>;
    using MaskSOType = ImageMaskSpatialObject<Self::ObjectDimension>;

    typename MaskSOType::Pointer maskSpatialObject = dynamic_cast<MaskSOType *>(m_SpatialObject.GetPointer());
    if (maskSpatialObject.IsNull())
    {
      itkExceptionMacro("Invalid dynamic cast.");
    }

    typename MaskImageType::ConstPointer maskImage = maskSpatialObject->GetImage();

    using MaskIteratorType = ImageRegionConstIteratorWithIndex<MaskImageType>;
    MaskIteratorType it(maskImage, maskImage->GetLargestPossibleRegion());
    it.GoToBegin();
    IndexType  ind;
    PointType  pnt;
    PointType  tPnt;
    VectorType mv;
    while (!it.IsAtEnd())
    {
      if (it.Get() > 0) // if inside the mask
      {
        ind = it.GetIndex();
        maskImage->TransformIndexToPhysicalPoint(ind, pnt);
        tPnt = maskSpatialObject->GetObjectToWorldTransform()->TransformPoint(pnt);
        ind = m_Image->TransformPhysicalPointToIndex(tPnt);
        mv[0] = m_Image->GetPixel(ind);
        m_Sum += static_cast<AccumulateType>(mv[0]);
        for (unsigned int i = 1; i < Self::SampleDimension; ++i)
        {
          ind[m_SampleDirection] += 1;
          mv[i] = m_Image->GetPixel(ind);
          m_Sum += static_cast<AccumulateType>(mv[i]);
        }
        m_Sample->PushBack(mv);
        ++m_NumberOfPixels;
      }
      ++it;
    }
  }
  else
  {
    // Get the bounding box
    m_SpatialObject->ComputeFamilyBoundingBox(SpatialObjectType::MaximumDepth);
    m_SpatialObject->Update();
    const typename SpatialObjectType::BoundingBoxType::BoundsArrayType bounds =
      m_SpatialObject->GetFamilyBoundingBoxInWorldSpace()->GetBounds();

    Point<double, Self::ObjectDimension> ptMin;
    Point<double, Self::ObjectDimension> ptMax;
    SizeType                             size;
    for (unsigned int i = 0; i < Self::ObjectDimension; ++i)
    {
      ptMin[i] = bounds[i * 2];
      ptMax[i] = bounds[i * 2 + 1];
    }
    auto      indMin = m_Image->TransformPhysicalPointToIndex(ptMin);
    auto      indMax = m_Image->TransformPhysicalPointToIndex(ptMax);
    IndexType imageIndex = m_Image->GetLargestPossibleRegion().GetIndex();
    SizeType  imageSize = m_Image->GetLargestPossibleRegion().GetSize();
    for (unsigned int i = 0; i < Self::ObjectDimension; ++i)
    {
      if (indMin[i] > indMax[i])
      {
        int tmpI = indMin[i];
        indMin[i] = indMax[i];
        indMax[i] = tmpI;
      }
      indMin[i] = std::max(indMin[i], imageIndex[i]);
      size[i] = indMax[i] - indMin[i] + 1;
      if (indMin[i] + size[i] < imageIndex[i] + imageSize[i])
      {
        size[i] = imageIndex[i] + imageSize[i] - indMin[i];
      }
    }

    const RegionType region(indMin, size);

    using IteratorType = ImageRegionConstIteratorWithIndex<ImageType>;
    IteratorType it(m_Image, region);
    it.GoToBegin();
    IndexType  ind;
    PointType  pnt;
    VectorType mv;
    while (!it.IsAtEnd())
    {
      ind = it.GetIndex();
      m_Image->TransformIndexToPhysicalPoint(ind, pnt);
      if (m_SpatialObject->IsInsideInWorldSpace(pnt))
      {
        mv[0] = it.Get();
        m_Sum += static_cast<AccumulateType>(mv[0]);
        for (unsigned int i = 1; i < Self::SampleDimension; ++i)
        {
          ind[m_SampleDirection] += 1;
          mv[i] = m_Image->GetPixel(ind);
          m_Sum += static_cast<AccumulateType>(mv[i]);
        }
        m_Sample->PushBack(mv);
        ++m_NumberOfPixels;
      }
      ++it;
    }
  }

  this->ComputeStatistics();
}

template <typename TInputImage, typename TInputSpatialObject, unsigned int TSampleDimension>
void
SpatialObjectToImageStatisticsCalculator<TInputImage, TInputSpatialObject, TSampleDimension>::PrintSelf(
  std::ostream & os,
  Indent         indent) const
{
  Superclass::PrintSelf(os, indent);

  itkPrintSelfObjectMacro(Image);
  itkPrintSelfObjectMacro(SpatialObject);

  os << indent << "Mean: " << m_Mean << std::endl;
  os << indent << "Sum: " << static_cast<typename NumericTraits<AccumulateType>::PrintType>(m_Sum) << std::endl;
  os << indent << "NumberOfPixels: " << static_cast<typename NumericTraits<SizeValueType>::PrintType>(m_NumberOfPixels)
     << std::endl;
  os << indent << "CovarianceMatrix: " << m_CovarianceMatrix << std::endl;
  os << indent << "SampleDirection: " << m_SampleDirection << std::endl;
  os << indent
     << "InternalImageTime: " << static_cast<typename NumericTraits<ModifiedTimeType>::PrintType>(m_InternalImageTime)
     << std::endl;
  os << indent << "InternalSpatialObjectTime: "
     << static_cast<typename NumericTraits<ModifiedTimeType>::PrintType>(m_InternalSpatialObjectTime) << std::endl;
  os << indent << "ModifiedTime: " << static_cast<typename NumericTraits<TimeStamp>::PrintType>(m_ModifiedTime)
     << std::endl;

  itkPrintSelfObjectMacro(Sample);
}

} // end namespace itk

#endif