1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkSpatialObjectToImageStatisticsCalculator_hxx
#define itkSpatialObjectToImageStatisticsCalculator_hxx
#include "itkImageRegionConstIteratorWithIndex.h"
#include "itkMeanSampleFilter.h"
#include "itkCovarianceSampleFilter.h"
#include "itkImageMaskSpatialObject.h"
#include <algorithm> // For max.
namespace itk
{
template <typename TInputImage, typename TInputSpatialObject, unsigned int TSampleDimension>
SpatialObjectToImageStatisticsCalculator<TInputImage, TInputSpatialObject, TSampleDimension>::
SpatialObjectToImageStatisticsCalculator()
{
m_Image = nullptr;
m_SpatialObject = nullptr;
m_Mean.Fill(0);
m_CovarianceMatrix.SetIdentity();
m_SampleDirection = TSampleDimension - 1;
m_InternalImageTime = 0;
m_InternalSpatialObjectTime = 0;
m_Sum = 0;
m_NumberOfPixels = 0;
m_Sample = SampleType::New();
}
template <typename TInputImage, typename TInputSpatialObject, unsigned int TSampleDimension>
bool
SpatialObjectToImageStatisticsCalculator<TInputImage, TInputSpatialObject, TSampleDimension>::ComputeStatistics()
{
using MeanAlgorithmType = itk::Statistics::MeanSampleFilter<SampleType>;
auto meanAlgorithm = MeanAlgorithmType::New();
meanAlgorithm->SetInput(m_Sample);
meanAlgorithm->Update();
typename MeanAlgorithmType::MeasurementVectorType mean = meanAlgorithm->GetMean();
for (unsigned int i = 0; i < SampleDimension; ++i)
{
m_Mean[i] = mean[i];
}
using CovarianceAlgorithmType = itk::Statistics::CovarianceSampleFilter<SampleType>;
auto covarianceAlgorithm = CovarianceAlgorithmType::New();
covarianceAlgorithm->SetInput(m_Sample);
covarianceAlgorithm->Update();
typename CovarianceAlgorithmType::MatrixType covarianceMatrix = covarianceAlgorithm->GetCovarianceMatrix();
for (unsigned int i = 0; i < covarianceMatrix.Rows(); ++i)
{
for (unsigned int j = 0; j < covarianceMatrix.Rows(); ++j)
{
m_CovarianceMatrix(i, j) = covarianceMatrix(i, j);
}
}
return true;
}
template <typename TInputImage, typename TInputSpatialObject, unsigned int TSampleDimension>
void
SpatialObjectToImageStatisticsCalculator<TInputImage, TInputSpatialObject, TSampleDimension>::Update()
{
if (!m_Image || !m_SpatialObject)
{
itkExceptionMacro("SpatialObjectToImageStatisticsCalculator: set image AND spatialObject.");
}
// Update only if the image or the spatial object has been modified
if ((m_Image->GetMTime() == m_InternalImageTime) && (m_SpatialObject->GetMTime() == m_InternalSpatialObjectTime))
{
return; // No need to update
}
m_InternalImageTime = m_Image->GetMTime();
m_InternalSpatialObjectTime = m_SpatialObject->GetMTime();
m_Sample = SampleType::New();
m_Sample->SetMeasurementVectorSize(SampleDimension);
m_NumberOfPixels = 0;
m_Sum = 0;
// If this is an ImageMaskSpatialObject we cannot use the flood filled
// iterator
if (!strcmp(m_SpatialObject->GetTypeName().c_str(), "ImageMaskSpatialObject"))
{
using MaskImageType = Image<unsigned char, Self::ObjectDimension>;
using MaskSOType = ImageMaskSpatialObject<Self::ObjectDimension>;
typename MaskSOType::Pointer maskSpatialObject = dynamic_cast<MaskSOType *>(m_SpatialObject.GetPointer());
if (maskSpatialObject.IsNull())
{
itkExceptionMacro("Invalid dynamic cast.");
}
typename MaskImageType::ConstPointer maskImage = maskSpatialObject->GetImage();
using MaskIteratorType = ImageRegionConstIteratorWithIndex<MaskImageType>;
MaskIteratorType it(maskImage, maskImage->GetLargestPossibleRegion());
it.GoToBegin();
IndexType ind;
PointType pnt;
PointType tPnt;
VectorType mv;
while (!it.IsAtEnd())
{
if (it.Get() > 0) // if inside the mask
{
ind = it.GetIndex();
maskImage->TransformIndexToPhysicalPoint(ind, pnt);
tPnt = maskSpatialObject->GetObjectToWorldTransform()->TransformPoint(pnt);
ind = m_Image->TransformPhysicalPointToIndex(tPnt);
mv[0] = m_Image->GetPixel(ind);
m_Sum += static_cast<AccumulateType>(mv[0]);
for (unsigned int i = 1; i < Self::SampleDimension; ++i)
{
ind[m_SampleDirection] += 1;
mv[i] = m_Image->GetPixel(ind);
m_Sum += static_cast<AccumulateType>(mv[i]);
}
m_Sample->PushBack(mv);
++m_NumberOfPixels;
}
++it;
}
}
else
{
// Get the bounding box
m_SpatialObject->ComputeFamilyBoundingBox(SpatialObjectType::MaximumDepth);
m_SpatialObject->Update();
const typename SpatialObjectType::BoundingBoxType::BoundsArrayType bounds =
m_SpatialObject->GetFamilyBoundingBoxInWorldSpace()->GetBounds();
Point<double, Self::ObjectDimension> ptMin;
Point<double, Self::ObjectDimension> ptMax;
SizeType size;
for (unsigned int i = 0; i < Self::ObjectDimension; ++i)
{
ptMin[i] = bounds[i * 2];
ptMax[i] = bounds[i * 2 + 1];
}
auto indMin = m_Image->TransformPhysicalPointToIndex(ptMin);
auto indMax = m_Image->TransformPhysicalPointToIndex(ptMax);
IndexType imageIndex = m_Image->GetLargestPossibleRegion().GetIndex();
SizeType imageSize = m_Image->GetLargestPossibleRegion().GetSize();
for (unsigned int i = 0; i < Self::ObjectDimension; ++i)
{
if (indMin[i] > indMax[i])
{
int tmpI = indMin[i];
indMin[i] = indMax[i];
indMax[i] = tmpI;
}
indMin[i] = std::max(indMin[i], imageIndex[i]);
size[i] = indMax[i] - indMin[i] + 1;
if (indMin[i] + size[i] < imageIndex[i] + imageSize[i])
{
size[i] = imageIndex[i] + imageSize[i] - indMin[i];
}
}
const RegionType region(indMin, size);
using IteratorType = ImageRegionConstIteratorWithIndex<ImageType>;
IteratorType it(m_Image, region);
it.GoToBegin();
IndexType ind;
PointType pnt;
VectorType mv;
while (!it.IsAtEnd())
{
ind = it.GetIndex();
m_Image->TransformIndexToPhysicalPoint(ind, pnt);
if (m_SpatialObject->IsInsideInWorldSpace(pnt))
{
mv[0] = it.Get();
m_Sum += static_cast<AccumulateType>(mv[0]);
for (unsigned int i = 1; i < Self::SampleDimension; ++i)
{
ind[m_SampleDirection] += 1;
mv[i] = m_Image->GetPixel(ind);
m_Sum += static_cast<AccumulateType>(mv[i]);
}
m_Sample->PushBack(mv);
++m_NumberOfPixels;
}
++it;
}
}
this->ComputeStatistics();
}
template <typename TInputImage, typename TInputSpatialObject, unsigned int TSampleDimension>
void
SpatialObjectToImageStatisticsCalculator<TInputImage, TInputSpatialObject, TSampleDimension>::PrintSelf(
std::ostream & os,
Indent indent) const
{
Superclass::PrintSelf(os, indent);
itkPrintSelfObjectMacro(Image);
itkPrintSelfObjectMacro(SpatialObject);
os << indent << "Mean: " << m_Mean << std::endl;
os << indent << "Sum: " << static_cast<typename NumericTraits<AccumulateType>::PrintType>(m_Sum) << std::endl;
os << indent << "NumberOfPixels: " << static_cast<typename NumericTraits<SizeValueType>::PrintType>(m_NumberOfPixels)
<< std::endl;
os << indent << "CovarianceMatrix: " << m_CovarianceMatrix << std::endl;
os << indent << "SampleDirection: " << m_SampleDirection << std::endl;
os << indent
<< "InternalImageTime: " << static_cast<typename NumericTraits<ModifiedTimeType>::PrintType>(m_InternalImageTime)
<< std::endl;
os << indent << "InternalSpatialObjectTime: "
<< static_cast<typename NumericTraits<ModifiedTimeType>::PrintType>(m_InternalSpatialObjectTime) << std::endl;
os << indent << "ModifiedTime: " << static_cast<typename NumericTraits<TimeStamp>::PrintType>(m_ModifiedTime)
<< std::endl;
itkPrintSelfObjectMacro(Sample);
}
} // end namespace itk
#endif
|