1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkCenteredEuler3DTransform_h
#define itkCenteredEuler3DTransform_h
#include <iostream>
#include "itkEuler3DTransform.h"
#include "itkMacro.h"
#include "itkVersor.h"
namespace itk
{
/** \class CenteredEuler3DTransform
* \brief CenteredEuler3DTransform of a vector space (e.g. space coordinates)
*
* This transform applies a rotation about a specific coordinate or
* centre of rotation followed by a translation.
*
* \ingroup ITKTransform
*/
template <typename TParametersValueType = double>
class ITK_TEMPLATE_EXPORT CenteredEuler3DTransform : public Euler3DTransform<TParametersValueType>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(CenteredEuler3DTransform);
/** Standard class type aliases. */
using Self = CenteredEuler3DTransform;
using Superclass = Euler3DTransform<TParametersValueType>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** New macro for creation of through a Smart Pointer */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(CenteredEuler3DTransform);
/** Dimension of the space. */
static constexpr unsigned int SpaceDimension = 3;
static constexpr unsigned int InputSpaceDimension = 3;
static constexpr unsigned int OutputSpaceDimension = 3;
static constexpr unsigned int ParametersDimension = 9;
using typename Superclass::ParametersType;
using typename Superclass::ParametersValueType;
using typename Superclass::FixedParametersType;
using typename Superclass::FixedParametersValueType;
using typename Superclass::JacobianType;
using typename Superclass::JacobianPositionType;
using typename Superclass::InverseJacobianPositionType;
using typename Superclass::ScalarType;
using typename Superclass::InputVectorType;
using typename Superclass::OutputVectorType;
using typename Superclass::InputCovariantVectorType;
using typename Superclass::OutputCovariantVectorType;
using typename Superclass::InputVnlVectorType;
using typename Superclass::OutputVnlVectorType;
using typename Superclass::InputPointType;
using typename Superclass::OutputPointType;
using typename Superclass::MatrixType;
using typename Superclass::InverseMatrixType;
using typename Superclass::CenterType;
using typename Superclass::TranslationType;
using typename Superclass::TranslationValueType;
using typename Superclass::OffsetType;
/** Base inverse transform type. This type should not be changed to the
* concrete inverse transform type or inheritance would be lost. */
using InverseTransformBaseType = typename Superclass::InverseTransformBaseType;
using InverseTransformBasePointer = typename InverseTransformBaseType::Pointer;
/** Set the transformation from a container of parameters
* This is typically used by optimizers. There are nine parameters. The first
* three represent the angles of rotation (in radians) around each one of the
* axes (X,Y,Z), the next three parameters represent the coordinates of the
* center of rotation and the last three parameters represent the
* translation. */
void
SetParameters(const ParametersType & parameters) override;
/** Get the parameters that uniquely define the transform
* This is typically used by optimizers. There are nine parameters. The first
* three represent the angles of rotation (in radians) around each one of the
* axes (X,Y,Z), the next three parameters represent the coordinates of the
* center of rotation and the last three parameters represent the
* translation. */
const ParametersType &
GetParameters() const override;
/** This method computes the Jacobian matrix of the transformation.
* given point or vector, returning the transformed point or
* vector. The rank of the Jacobian will also indicate if the
* transform is invertible at this point. */
void
ComputeJacobianWithRespectToParameters(const InputPointType & p, JacobianType & jacobian) const override;
/** Get an inverse of this transform. */
bool
GetInverse(Self * inverse) const;
/** Return an inverse of this transform. */
InverseTransformBasePointer
GetInverseTransform() const override;
protected:
CenteredEuler3DTransform();
CenteredEuler3DTransform(const MatrixType & matrix, const OutputPointType & offset);
CenteredEuler3DTransform(unsigned int parametersDimension);
~CenteredEuler3DTransform() override = default;
/**
* Print contents of an CenteredEuler3DTransform
*/
void
PrintSelf(std::ostream & os, Indent indent) const override;
}; // class CenteredEuler3DTransform
} // namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkCenteredEuler3DTransform.hxx"
#endif
#endif /* itkCenteredEuler3DTransform_h */
|