1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkCenteredSimilarity2DTransform_h
#define itkCenteredSimilarity2DTransform_h
#include "itkSimilarity2DTransform.h"
namespace itk
{
/** \class CenteredSimilarity2DTransform
* \brief CenteredSimilarity2DTransform of a vector space
* (e.g. space coordinates)
*
* This transform applies a homogeneous scale and rigid transform in
* 2D space. The transform is specified as a scale and rotation around
* a arbitrary center and is followed by a translation.
* given one angle for rotation, a homogeneous scale and a 2D offset
* for translation.
*
* The main difference between this class and its superclass
* Similarity2DTransform is that the center of transformation is exposed
* for optimization.
*
* The serialization of the optimizable parameters is an array of 6 elements
* ordered as follows:
* p[0] = scale
* p[1] = angle
* p[2] = x coordinate of the center
* p[3] = y coordinate of the center
* p[4] = x component of the translation
* p[5] = y component of the translation
*
* There are no fixed parameters.
*
* \sa Similarity2DTransform
*
* \ingroup ITKTransform
*/
template <typename TParametersValueType = double>
class ITK_TEMPLATE_EXPORT CenteredSimilarity2DTransform : public Similarity2DTransform<TParametersValueType>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(CenteredSimilarity2DTransform);
/** Standard class type aliases. */
using Self = CenteredSimilarity2DTransform;
using Superclass = Similarity2DTransform<TParametersValueType>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** New macro for creation of through a Smart Pointer. */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(CenteredSimilarity2DTransform);
/** Dimension of parameters. */
static constexpr unsigned int SpaceDimension = 2;
static constexpr unsigned int InputSpaceDimension = 2;
static constexpr unsigned int OutputSpaceDimension = 2;
static constexpr unsigned int ParametersDimension = 6;
/** Scalar type. */
using typename Superclass::ScalarType;
/** Parameters type. */
using typename Superclass::FixedParametersType;
using typename Superclass::FixedParametersValueType;
using typename Superclass::ParametersType;
using typename Superclass::ParametersValueType;
/** Jacobian type. */
using typename Superclass::JacobianType;
using typename Superclass::JacobianPositionType;
using typename Superclass::InverseJacobianPositionType;
/** Offset type. */
using typename Superclass::OffsetType;
using typename Superclass::OffsetValueType;
/** Point type. */
using typename Superclass::InputPointType;
using typename Superclass::OutputPointType;
using InputPointValueType = typename InputPointType::ValueType;
/** Vector type. */
using typename Superclass::InputVectorType;
using typename Superclass::OutputVectorType;
/** CovariantVector type. */
using typename Superclass::InputCovariantVectorType;
using typename Superclass::OutputCovariantVectorType;
/** VnlVector type. */
using typename Superclass::InputVnlVectorType;
using typename Superclass::OutputVnlVectorType;
/** Base inverse transform type. This type should not be changed to the
* concrete inverse transform type or inheritance would be lost. */
using InverseTransformBaseType = typename Superclass::InverseTransformBaseType;
using InverseTransformBasePointer = typename InverseTransformBaseType::Pointer;
/** Set the transformation from a container of parameters
* This is typically used by optimizers.
* There are 6 parameters. The first one represents the
* scale, the second represents the angle of rotation, the next
* two represent the center of the rotation
* and the last two represent the translation.
*
* \sa Transform::SetParameters()
* \sa Transform::SetFixedParameters() */
void
SetParameters(const ParametersType & parameters) override;
/** Get the parameters that uniquely define the transform
* This is typically used by optimizers.
* There are 6 parameters. The first one represents the
* scale, the second represents the angle of rotation, the next
* two represent the center of the rotation
* and the last two represent the translation.
*
* \sa Transform::GetParameters()
* \sa Transform::GetFixedParameters() */
const ParametersType &
GetParameters() const override;
/** Compute the Jacobian Matrix of the transformation at one point */
void
ComputeJacobianWithRespectToParameters(const InputPointType & p, JacobianType & jacobian) const override;
/** Set the fixed parameters and update internal transformation.
* This is a null function as there are no fixed parameters. */
void
SetFixedParameters(const FixedParametersType &) override;
/** Get the Fixed Parameters. An empty array is returned
* as there are no fixed parameters. */
const FixedParametersType &
GetFixedParameters() const override;
/**
* This method creates and returns a new Rigid2DTransform object
* which is the inverse of self. */
void
CloneInverseTo(Pointer & result) const;
/** Get an inverse of this transform. */
bool
GetInverse(Self * inverse) const;
/** Return an inverse of this transform. */
InverseTransformBasePointer
GetInverseTransform() const override;
/**
* This method creates and returns a new Rigid2DTransform object
* which has the same parameters. */
void
CloneTo(Pointer & result) const;
protected:
CenteredSimilarity2DTransform();
CenteredSimilarity2DTransform(unsigned int spaceDimension, unsigned int parametersDimension);
~CenteredSimilarity2DTransform() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkCenteredSimilarity2DTransform.hxx"
#endif
#endif /* itkCenteredSimilarity2DTransform_h */
|