1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkElasticBodySplineKernelTransform_h
#define itkElasticBodySplineKernelTransform_h
#include "itkKernelTransform.h"
namespace itk
{
/** \class ElasticBodySplineKernelTransform
* \brief This class defines the elastic body spline (EBS) transformation.
*
* This class defines the elastic body spline (EBS) transformation.
* It is implemented in as straightforward a manner as possible from
* the IEEE TMI paper by Davis, Khotanzad, Flamig, and Harms,
* Vol. 16 No. 3 June 1997
* Taken from the paper:
* The EBS "is based on a physical model of a homogeneous, isotropic,
* three-dimensional elastic body. The model can approximate the way
* that some physical objects deform".
*
* \ingroup ITKTransform
*/
template <typename TParametersValueType = double, unsigned int VDimension = 3>
class ITK_TEMPLATE_EXPORT ElasticBodySplineKernelTransform : public KernelTransform<TParametersValueType, VDimension>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(ElasticBodySplineKernelTransform);
/** Standard class type aliases. */
using Self = ElasticBodySplineKernelTransform;
using Superclass = KernelTransform<TParametersValueType, VDimension>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(ElasticBodySplineKernelTransform);
/** New macro for creation of through a Smart Pointer */
itkNewMacro(Self);
/** Scalar type. */
using typename Superclass::ScalarType;
/** Parameters type. */
using typename Superclass::ParametersType;
using typename Superclass::FixedParametersType;
/** Jacobian type. */
using typename Superclass::JacobianType;
using typename Superclass::JacobianPositionType;
using typename Superclass::InverseJacobianPositionType;
/** Dimension of the domain space. */
static constexpr unsigned int SpaceDimension = Superclass::SpaceDimension;
/** Set alpha. Alpha is related to Poisson's Ratio (\f$\nu\f$) as
* \f$\alpha = 12 ( 1 - \nu ) - 1\f$
*/
itkSetMacro(Alpha, TParametersValueType);
/** Get alpha */
itkGetConstMacro(Alpha, TParametersValueType);
using typename Superclass::InputPointType;
using typename Superclass::OutputPointType;
using typename Superclass::InputVectorType;
using typename Superclass::OutputVectorType;
using typename Superclass::InputCovariantVectorType;
using typename Superclass::OutputCovariantVectorType;
protected:
ElasticBodySplineKernelTransform();
~ElasticBodySplineKernelTransform() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
using typename Superclass::GMatrixType;
/** Compute G(x)
* For the elastic body spline, this is:
* \f$ G(x) = [alpha*r(x)^2*I - 3*x*x']*r(x) \f$
* \f$ G(x) = [\alpha*r(x)^2*I - 3*x*x']*r(x) \f$
* where
* \f$\alpha = 12 ( 1 - \nu ) - 1\f$
* \f$\nu\f$ is Poisson's Ratio
* \f$ r(x) = Euclidean norm = sqrt[x1^2 + x2^2 + x3^2] \f$
* \f[ r(x) = \sqrt{ x_1^2 + x_2^2 + x_3^2 } \f]
* I = identity matrix
*/
void
ComputeG(const InputVectorType & x, GMatrixType & gmatrix) const override;
/** alpha, Alpha is related to Poisson's Ratio (\f$\nu\f$) as
* \f$ \alpha = 12 ( 1 - \nu ) - 1\f$
*/
TParametersValueType m_Alpha{};
};
} // namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkElasticBodySplineKernelTransform.hxx"
#endif
#endif // itkElasticBodySplineKernelTransform_h
|